P12 - 9.0 - Circuit VIR Review

Method: Choose Arbitrary $R = \#\Omega's$

Electric Current (I): A stream of charged particles, measured by the charge (Q) passing a point in a circuit at a given time, by an Ammeter.

; Amps A

1 ampere (amp) is the current of 1C per second.

Resistance: a measure of the opposition to current flow in an electric circuit in Ω Ohms Ie: a light bulb

 1Ω (Ohm) is the resistance in a circuit to 1 amp and $1 \Delta V$.

1 V : the potential difference to push 1A of current across 1Ω of resistance.

V = IROhm's Law *R*: *Resistance* (*Ohms*; Ω)

Useful thought

See Graphs **Below**

Ohms Law: Current through a conductor between two points is directly proportional to the voltage across the two points.

P = IVPower in Watts W $P = I^2 R$ $P = \frac{R}{R}$

Power Lines

 V_t : sum of the voltage drop in non-internal resistors (Not Ir)

- High Voltage

Useful Substitution

- Lower Current/Power loss

Terminal Voltage (V_t) $V_t = \epsilon - Ir_{int}$ **Battery Internal** Resistance (Ir_{int})

 $V_t = \epsilon$; Ir = 0

 \in : Electromotive Force (emf); V

Current is like river flow*

Add a resistor in: Series R_T Increases Parallel R_T Decreases

$$\begin{split} I_T &= \ I_1 = I_2 = I_3 \dots \\ V_T &= V_1 + V_2 + V_3 \dots \\ R_T &= R_1 + R_2 + R_3 \dots \\ \end{split} \qquad \begin{split} V_T &= V_1 = V_2 = V_3 \dots \\ I_T &= I_1 + I_2 + I_3 \dots \\ \frac{1}{R_T} &= \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \dots \end{split}$$

Two Resistors_{II}

Circuits R_T 1st

Parallel 2nd Series 1st

Series 2nd Parallel 1st 1st Redraw 2nd Redraw

Kirkoff's Laws

Redraw!

 $-V + V \dots = 0$ | Loop Rule: Sum of the voltages in a loop equals zero

* -ve (drop) if through resistor with current, +ve if against current through resistor * +ve (rise) if through battery with current, -ve if against current through battery

 $I_A + I_B = I_C$

Junction Rule: Current into a junction equals current out

Electron Volt (eV): Energy to move an electron across 1 Volt.

Transformer