P11 - 6.2 - Kinetic Potential Conservation Energy Notes

Potential Energy, E_p : Energy due to Kinetic Energy, E_k : Energy due to an objects Motion. an objects Height (Stored Energy)

Law of Conservation of Energy: cannot be created or destroyed, must be conserved!

Ball Drop Total Kinetic

5m

Potential

$$E_k = 0 J$$
, at rest

$$E_p = mgh$$

 $E_p = (1.02)(9.8)(10)$
 $E_p = 100 J$

$$E_t = E_k + E_p$$

$$E_k = 0$$

$$E_k = \frac{1}{2}mv^2$$

$$v = \sqrt{\frac{2E_k}{m}}$$

$$E_p = mgh$$

 $E_p = (1.02)(9.8)(5)$
 $E_p = 50 J$

$$v = \sqrt{\frac{2(50)}{1.02}}$$

$$v = 9.9 \frac{m}{s}$$

$$E_k = 50 J$$

Bottom*
$$v = \sqrt{\frac{2E_k}{m}}$$

$$E_t = 100 J \qquad E_k = \frac{1}{2} m v^2$$

$$E_p = mgh$$

$$E_p = (1.02)(9.8)(0.001)$$

$$E_p = 0.01 J$$

$$v = \sqrt{\frac{2(100)}{1.02}}$$

$$E_k = 100 J$$

$$v_f^2 = v_i^2 + 2ad$$
 "a" Energy –
 $v_f = \sqrt{2ad}$ Kinematics Link
 $v_f = \sqrt{(2)(-9.8)(-10)}$
 $v_f = 14\frac{m}{s}$

 $Total\ Initial\ Energy = Total\ Final\ Energy$

$$E_{i} = E_{f}$$

$$E_{ki} + E_{pi} = E_{kf} + E_{pf}$$

$$\frac{1}{2}mv_{i}^{2} + mgh_{i} = \frac{1}{2}mv_{f}^{2} + mgh_{f}$$

$$\Delta E_p + \Delta E_k = 0$$
$$\Delta E_p = -\Delta E_k$$

Total Energy Change equals zero

P11 - 6.2 - Total Energy Notes

Find the Potential, Kinetic and Total Energy of 10 kg object at a height of 15 m?

Find the E_p , E_k , E_t of 10 kg object at a height of 15 m at $v = 10 \frac{m}{s}$?

What is the Potential, Kinetic and Total Energy of $10 \, kg$ object at $a \, h = 0 \, m$ at at $v = 10 \, \frac{m}{s}$?

What is the Potential, Kinetic and Total Energy of 10 kg object at a height of 0 m?

$$E_{p} = mgh$$

$$E_{p} = 10(9.8)(0)$$

$$E_{k} = \frac{1}{2}mv^{2}$$

$$E_{t} = E_{g} + E_{k}$$

$$E_{t} = 0 + 0$$

$$E_{k} = 0$$

What is the Final Velocity, and Time in Flight, of 5 kg ball if dropped from a 10.1 m?

P11 - 6.2 - Energy Work Mom. Dyn. Kin Link Notes Find v_f of a car of m = 25 kg, initially at rest, with a Force of 125 N over a d = 10m?

How much Work was done on the Object?

W = Fd

W = 125(10)

W = 1250 J

$$v = \sqrt{\frac{2(125)(10)}{25}}$$

$$v = 10\frac{m}{s}$$

$$v_f = v_i + at$$
Check your

Check your Answer!
$$F = ma$$

$$125 = 25(5)$$

$$125N = 125 N$$

How long did it take?

$$\Delta d = v_i t + \frac{1}{2} a t^2$$

$$t = \sqrt{\frac{2d}{a}}$$

$$t = \sqrt{\frac{(2)(10)}{5}}$$

$$t = 2 s$$

$$p = mv$$

$$p = (25)(10)$$

$$p = 250 \frac{kgm}{s}$$

And Around And Around We Go!