

P11 - 3.1 - F = ma Newton's Laws Notes

Force - A Push or pull

Force of Gravity - Attracts Matter to Matter

Four Fundamental Forces

Matter - Anything that has Mass and takes up space.

1. Gravitational P11

Mass - Amount of Matter an object holds Weight - The force of Gravitational Attraction

2. Electromagnetic (e^{-})

Mass is **constant** throughout the universe.

3.Strong Nuclear (keeps p^+ in nucleus) 4. Weak Nuclear (Radioactive Decay)

Weight depends on your location. (Earth, Moon, Space ...)

g, depends on the \underline{m} of the planet and \underline{d} from it's centre

Units: Newton's (N)

1 Newton: The force required to accelerate a 1kg object at $1\frac{m}{s^2}$. $1N = \frac{1kgm}{s^2} \quad F = ma$ $N = kg \frac{m}{s^2}$

$$1N = \frac{1kgm}{s^2} \quad F = ma$$

$$N = kg \frac{m}{s^2}$$

Newton's 3 Laws:

Including at rest

Inertia - An object will continue at a constant velocity, unless acted upon by a non-zero sum force.

The sum of the forces in the direction of motion, minus opposing forces.

$$\Sigma F = ma$$

$$F_a - F_f = ma$$

(Winners minus losers.)

Tug of War

Every force has an equal and opposite force.

(You push me, I push back)

The Gravitational Force:

$$F_g = mg$$

 F_g : Force of Gravity, (Gravitational Force)

m: Mass g: Gravity

$$g = -9.8 \frac{m}{s^2}$$

$$\frac{N}{kg} = \frac{m}{s^2}$$

What is the Pull Force required to accelerated a 15kg object at $2\frac{m}{s^2}$?

Free Body Diagram:

$$F = ma
F = (15)(2)
F = 30 N$$

$$F_{net} = ma
F_p - F_f = ma
F_p - 0 = 15 \times 2
F_p = 30 N$$

We were actually supposed to subtract a nonexistent

What is the Pull Force required to Accelerated a 15kg object at $2\frac{m}{s^2}$, with a F_f of 3 N?

Frictional Force.

F = ma $F_p - F_f = ma + F_f$

Obviously 3 more Newton's than without Friction = 3N.

15

20 25

P11 - 3.2 - F=ma, $F_f=\mu F_n$ Solve Variable Notes

A Pull Force of 45 N is applied to a 15kg object. Find its acceleration. A Push Force of 12 N on an object's $a = 2\frac{m}{s^2}$, Find object's Mass and Weight?

A Pull Force of 92 N on a 15 kg object's $a = 5 \frac{m}{s^2}$. What is the Frictional Force?

Find the Push Force to $a = 2\frac{m}{s^2}$ a 15kg object,

with a Frictional Co – efficint of $\mu = 0.3$?

μ: Frictional Co – efficient (Mhew) No Units. Higher the Mhew, u, Higher the Frictional Force.

P11 - 3.3 - Tension Notes

Find T_1 and T_2

System Mass of system

$$F = ma$$

$$F - T_1 - F_f + T_2 - F_f = ma$$

$$105 - T_1 - F_f + T_2 - F_f = (15 + 20)a$$

$$105 = 35a$$

$$T_1 = T_2$$

$$a = 3\frac{m}{s^2}$$

$$F_g = mg$$

$$F_g = 15 \times 9.8$$

$$F_g = 147 N$$

$$F_g = mg$$

$$F_g = 20 \times 9.8$$

$$F_g = 196 N$$

Mass 2
$$F = ma$$

$$T_2 - F_f = ma$$

$$T_2 - 0 = 15 \times 3$$

$$T_2 = 45 N$$

Mass 1
$$F = ma$$

$$F - T_1 - T_f = ma$$

$$105 - T_1 - F_f = 20 \times 3$$

$$T_1 = 45 N$$

Tension must be equal!

$$F_g = mg$$
 $F_g = mg$
 $F_a = 15(9.8)$ $F_a = 20(9.8)$
 $F_a = 147 N$ $F_a = 196 N$

$$F = ma$$

$$Fg_{1} - T_{1} + T_{2} - Fg_{2} = ma$$

$$196 - T_{1} + T_{2} - 147 = (15 + 20)a$$

$$49 = 35a$$

$$a = 1.4 \frac{m}{s^{2}}$$

$$F = ma$$

$$T_2 - F_g = ma$$

$$T_2 = ma + F_g$$

$$T_2 = 15 \times 1.4 + 147$$

$$T_2 = 168 N$$

$$F_g = mg$$

$$F_g = 20 \times 9.8$$

$$F_g = 196 N$$

Mass 1

$$F = ma$$

$$F_g - T_1 = ma$$

$$T_1 = F_g - ma$$

$$T_1 = 196 - 20 \times 1.4$$

$$T_1 = 168 N$$

P11 - 3.3 - Tension Notes

P11 - 3.4 - Elevator Notes

Logic

Find the weight of a 25 kg object on a scale in a stationary Elevator?

What is the weight of a 25 kg object on a scale in a Elevator moving at a constant velocity?

Find the weight of a 25 kg object on a scale in an Elevator moving up, $a = 5 \frac{m}{s^2}$ upwards.

Find the weight of a 25 kg object on a scale in an Elevator moving down, $a = 2 \frac{m}{s^2}$ downward.

+

P12 - 3.5 - Dynamics Trig Notes

Find the acceleration of a F = 75 N on a 15kg object pulled at an angle of 25° in diagram?

Find the "a" of a F = 75 N on a 15kg object pulled at an angke of 25° and $\mu = 0.2$? in diagram.

What takes less force to pull or push a lawn mower? Pull, because pushing loses force to the ground!

P12 - 3.6 - Dynamics Fric Slope Notes

What is the acceleration of a 15 kg block sliding down a 30° slope? Ignore Friction.

What is the acceleration of a 15 kg block sliding down a 30^{0} slope with $\mu = 0.3$.

P12 - 3.6 - Dynamics Pull Fric Slope Notes

How much force is required to accelerate a 15 kg object at $2\frac{m}{s^2}$ up a slope 30^0 with $\mu=0$?

How much force is required to accelerate a 15 kg object at $2\frac{m}{s^2}$ up a slope 30^0 with $\mu=0.3$?

P12 - 3.6 - Dynamics Pulley Fric Up Slope Notes

