P11 - 1.3 - Isolating variables Notes Algebra

a + b = c

Solve for "a"

a + b = c

 $\underbrace{a = c - b}^{-b - b}$ Subtract "b" from both sides

 $v = \frac{d}{t}$

 $v = \frac{d}{t}$ $\times v = \frac{d}{d}$ tv = d d = vt

Solve for d

 $v = \frac{d}{t}$ $t \times v = \frac{d}{t}$ tv = d tv = d

Solve for t

× both sides by "t" ÷ both sides by "v"

 $t = \frac{d}{v}$ $t = \frac{d}{v}$

 $\begin{array}{c} \frac{d}{v} \\ \frac{d}{d} \\ \end{array}$ Bring t up Bring v down

Bring t up Mirror

 $\frac{a}{b} = \frac{c}{d}$

Solve for "a" $\frac{a}{b} = \frac{c}{d}$ $a = \frac{cb}{d}$

Bring "b" up

Solve for c

 $\frac{a}{b} = \frac{c}{d}$ $\frac{ad}{b} = c$ $c = \frac{ad}{b}$ Bring "d" up

Solve for b

 $\frac{a}{b} = \frac{c}{d}$ $a = \frac{cb}{d}$ ad = cb $\frac{ad}{c} = b$ ad

Bring b up Bring d up Bring c down Mirror

 $\frac{b}{b} = c$ ad = cb $d = \frac{cb}{a}$

ad

Solve for "d" a c

Bring d up
Bring b up
Bring "a" down

$$\sin\theta = \frac{0}{H}$$

$$O = H\sin\theta$$

 $\sin\theta = \frac{0}{H} \qquad \cos\theta$ $H = \frac{\sin\theta}{0}$

Mirror

 $cos\theta = \frac{A}{H}$ $A = Hcos\theta$

 $cos\theta = \frac{A}{H}$ $tan\theta = \frac{O}{A}$ $H = \frac{A}{cos\theta}$ $O = Atan\theta$

 $v_f = v_i + at$

Solve for v_i

 $v = v_0 \pm at$

0 = at time zero $\pm : +ve "a", -ve "a"$

 $v_f = v_i + at$ -at - at $v_f - \underline{at} = \underline{v_i}$

Subtract "at" from both sides Mirror $v_f = v_i + at$ $v_i = v_f - at$

Bring it over Change sign Mirror

 $v_f = v_i + at$

Solve for "t"

 $v_f - v_i = at$ $\frac{v_f - v_i}{a} = at$ $\frac{v_f - v_i}{a} = t$ a $t = \frac{v_f - v_i}{a}$

Subtract v_i from both sides Divide both sides by "a" Mirror

 $v_f = v_i + at$ $t = \frac{v_f - v_i}{a}$

Bring " v_0 " over Bring "a" down Mirror

P11 - 1.3 - Isolating variables Notes Algebra

Solve for v_i

$$a^{2} + b^{2} = c^{2}$$
 Solve for c
$$a^{2} + b^{2} = c^{2}$$

$$\sqrt{a^{2} + b^{2}} = \sqrt{c^{2}}$$
 Square root both sides
$$\sqrt{a^{2} + b^{2}} = c$$
 Mirror
$$c = \sqrt{a^{2} + b^{2}}$$

$$a^{2} + b^{2} = c^{2}$$

$$a^{2} = c^{2} - b^{2}$$

$$\sqrt{a^{2}} = \sqrt{c^{2} - b^{2}}$$

$$a = \sqrt{c^{2} - b^{2}}$$

Solve for "a"

Bring b^2 over Square root both sides

$$v_f^2 = v_i^2 + 2ad$$

Solve for v_f

$$v_f^2 = v_i^2 + 2ad$$

$$\sqrt{v_f^2} = \sqrt{v_i^2 + 2ad}$$

$$v_f = \sqrt{v_i^2 + 2ad}$$

$$v_f^2 = v_i^2 + 2ad$$

$$\sqrt{v_f^2} = \sqrt{v_i^2 + 2ad}$$

$$v_f^2 = v_i^2 + 2ad$$

$$v_f^2 - 2ad = v_i^2$$

$$v_f = \sqrt{v_i^2 + 2ad}$$

$$\sqrt{v_f^2 - 2ad} = v_i$$

$$v_i = \sqrt{v_f^2 - 2ad}$$
Square root both sides

 $v_f^2 = v_i^2 + 2ad$

Solve for "a"

Solve for d

Bring 2ad over Square root both sides Bring v_i^2 over Bring 2a down

Bring v_i^2 over Bring 2d down

Solve for a
$$d = v_{i}t + \frac{1}{2}at^{2}$$

$$d - v_{i}t = \frac{1}{2}at^{2}$$
Bring $v_{i}t$ over
$$\frac{2(d - v_{i}t)}{t^{2}} = a$$
Bring $v_{i}t$ over

Solve for t
$$d = v_i t + \frac{1}{2}at^2$$

$$0 = \frac{1}{2}at^2 + v_i t - d$$

$$Quadform$$

$$ver$$

$$(Brackets!)$$

$$wn$$

