C12 - 8.1 - $\log_b a = ?$ Definition Notes

The Definition of a Logarithm:

 $log_3 9 = ?$ $log_3 9 = 2$ Think: What power do you have to raise 3

 $log_2 8 = ?$ $log_2 8 = 3$ 8 equals 2 to what power?

to, to equal 9?

?=3

Switching from Log Form to Exponential Form:

Log Form

Exponential Form

Remember: The base of the log is the base of the exponent.

The exponent is the Answer.

The thing you are Logging equals the Base to the other side.

Log Form

 $\log_2 16 = ?$ $\log_2 16 = 4$ 16 equals 2 to what power?

 $16 = 2^?$ $2^4 = 2^x$

Exponential Form

?=4

Log Form -> Exponential Form and Solve for x

$$\log_2 16 = x$$

Set Log arbitrarily = x

 $\begin{array}{c}
16 = 2^x \\
2^4 = 2^x
\end{array}$

Exponential Form Change of Base

x=4

Same Base: Make exponents equal to each other

 $\log_2 16 = 4$

$$\log_{\frac{1}{2}} 16 = x$$

$$16 = \left(\frac{1}{2}\right)^{x}$$

$$2^{4} = (2^{-1})^{x}$$

$$2^{4} = 2^{-x}$$

$$4 = -x$$

Exponential Form Change of Base Exponent Laws Solve

$$\log_3\left(\frac{1}{27}\right) = x$$
$$\frac{1}{27} = 3^x$$

Exponential Form

$$\frac{27}{\frac{1}{3^3}} = 3^x$$

Change of Base Exponent Laws

$$x = -3$$

$$\log_{2a} 16a^{4} = x$$

$$16a^{4} = (2a)^{x}$$

$$(2a)^{4} = (2a)^{x}$$

Exponential Form Change of Base

x = 4

C12 - 8.1 - $\log_b x = c$, $\log_x a = c$, $\log_b a = x$ *Notes*

Log Form -> Exponential Form and Solve for x

 $\log_5 125 = x$ $125 = 5^x$ Exponential Form $5^3 = 5^x$ Change of Base The base of the log is the base of the exponent

x = 3

Same Base: Make exponents equal to each other

 $\log_4 x = 3$ $\log_5 x = -2$ $\log_6 x = 2$ $\log_9 x =$ $x = 4^{3}$ **Exponential Form** $x = 5^{-2}$ $x = 6^{2}$ $x = \frac{1}{5^2}$ **Exponent Laws** x = 64Solve x = 36 $x = \sqrt{9}$ Solve x = 3

 $\log_x 27 = \frac{3}{2}$ $\log_x 64 = 3$ $\log_x 32 = 5$ $64 = x^3$ **Exponential Form** $32 = x^5$ $27 = x^{\frac{3}{2}}$ $4^3 = x^3$ **Exponential Form** $2^5 = x^5$ Change of Base $\sqrt[5]{2^5} = \sqrt[5]{x^5}$ Change of Base $27^{\frac{2}{3}} = \left(\chi^{\frac{3}{2}}\right)^{\frac{2}{3}}$ Fifth Root Both Sides Take both/ Solve sides to $27^{\frac{2}{3}} = x^1$ reciprocal Solve $\sqrt[3]{27^2} = x$ exponent

C12 - 8.2 - Log Restrictions Notes

State Restrictions:

 $\log_b a$

a > 0

b > 0 $b \neq 1$

logx x > 0

log 0 = und

log(-3) = und

 $\log_x \#$

x > 0, $x \neq 1$

 $\log_0 \# = und$

 $\log_{(-2)}\#=und$

 $\log_1 \# = und$

State Restrictions and Solve

Domain: Set the thing you are logging to greater than or equal to zero, then solve.

 $\log_2 x = 2$ $x = 2^2$

x = 4

 $\log_2(x-5)=2$ $x - 5 = 2^2$ x = 4 + 5

x - 5 > 0

 $(3-x)=2^3$ 3 - x = 8

 $\log_2(3-x)=3$

3 - x > 0-x < 3

x < 3

 $\log_3 x^2 = 2$ $x^2 > 0$ $x^2 = 3^2$ x < 0, x > 0 $x^2 = 9$

 $\sqrt{x^2} = \sqrt{9}$

 $x = \pm 3$

-2 -3

 $2\log_3 x = 2$ $\log_3 x = 1$ $x^2 = 1$ $x^2 = 9$ $\sqrt{x^2} = \sqrt{9}$ $x = \pm 3$

 $\log_{36}(5x - x^2) = \frac{1}{2}$ $5x - x^2 = 36^{\frac{1}{2}}$ $5x - x^2 = 6$ $x^2 - 5x + 6 = 0$ (x-2)(x-3)=0

 $5x - x^2 > 0$ x(5-x) > 00 < x < 5

 $\log_9(x^2 - 1) = \frac{1}{2}$ $x^2 - 1 = 9^{\frac{1}{2}}$ $x^2 - 1 = 3$ $x^2 - 4 = 0$ (x+2)(x-2)=0

 $x^2 - 1 > 0$ (x+1)(x-1) > 0

x = 2

 $log_{x-3} 16 = 2$ $16 = (x - 3)^2$ 16 = (x - 3)(x - 3) $16 = x^2 - 6x + 9$ $0 = x^2 - 6x - 7$ 0 = (x-7)(x+1)

x - 3 > 0 $x - 3 \neq 1$ $\log_3(-x) = 2$ $-x = 3^2$

Set the base of the log > 0 and $\neq 1$ and solve.

C12 - 8.3 - $\log a^m = m \log a$ Change Base Dist. Notes

 $log x^2$ 2logx

$$\log\left(\frac{1}{2}\right)$$

$$\log 2^{-1}$$

$$-1\log 2$$

$$3log4^2$$
 $3log4^2$ $2 \times 3log4$ OR $log4^{2 \times 3}$ $6log4$ $log4^6$ $6log4$

Bring Exponent down in front and Vice Versa Multiply

$$\begin{array}{c}
log\sqrt{x} \\
logx^{\frac{1}{2}}
\end{array}$$

$$\begin{array}{c}
\frac{1}{2}\log x \\
\frac{logx}{2}
\end{array}$$

$$\log\left(\frac{1}{2}\right)$$

$$\log 2^{-1}$$

$$-1\log 2$$

$$-\log 2$$

$$\log_5 5^4 = x \qquad 5 \text{ to what} \qquad \log_5 625 = x \qquad \text{Change of Base} \\ 5^4 = 5^x \qquad \text{power is } 5^4 \qquad \log_5 5^4 = x \qquad \text{Bring Exponent} \\ 4\log_5 5 = x \qquad \text{down in front} \\ 4 \times 1 = x \qquad \log_5 825 = x \\ 4 \times 1 = x \qquad \log_5 5 = 1$$

$$x = 4 \qquad \text{Solve}$$

$$x = 4 \qquad \text{Solve}$$

$$logxy^2 = \\ logx + logy^2 = \\ logx + 2logy$$

The exponent only applies to the y value

$$\log 3^{x+2}$$

$$(x+2)\log 3$$

$$x\log 3 + 2\log 3$$

Bring Exponent in front

Distribute

$$x(3log7 - log2)$$

3xlog7 - xlog2 =

GCF = x

Change of Base

$$\frac{\log 16}{\log 4} = \log_4 16 = 2$$

$$\frac{\log_2 16}{\log_2 4} = \log_4 16 = 2$$

Exponential Form $16 = 4^2$

$$\log_2 2 = 2 \qquad \qquad \frac{4}{2} = 2$$

$$\log_2 16 = 4 \qquad \qquad \frac{4}{2} = 2$$

 $log_2 4 =$ log₅ 4 \log_5

Choose the Base you want!

$$\frac{\log_8 16}{\log_2 16} = \frac{4}{3}$$

$$\frac{1}{\log_8 2} = \frac{1}{1}$$

$$\frac{1}{\left(\frac{\log 2}{\log 8}\right)} = \frac{1}{1}$$

$$1 \times \frac{\log 8}{\log 2} = \frac{\log 8}{\log 2}$$

Rule 6

 $\log_3 9 + \log_9 2$ $\log_{(3)^2}(9)^2 + \log_9 2$ $\log_9 81 + \log_9 2$ $\log_9 81 \times 2$

Take the base and the log to any exponent you like!

 $\log_9 162$

C12 - 8.4 - $\log_b m + \log_b n = \log_b mn \log_b m - \log_b n = \log_b \frac{m}{n} \log_{b^n} a^n Notes$

$$log1 + log5 + log7 = logA + logB + logC = logABC$$

$$log1 \times 5 \times 7 = log35$$

$$\log_3 27 - \log_3 3 = \begin{bmatrix} 3 - 1 = 2 \end{bmatrix}$$

$$\log_3 \frac{27}{3} = \\ \log_3 9 = 2$$
Subtract-Divide
$$\log_3 27 - \log_3 3 = \begin{bmatrix} \log_3 A - \log_3 A - \log_3 A - \log_3 A \\ \log_3 A - \log_3 A - \log_3 A \end{bmatrix}$$
Rearrange
$$\log_3 B - \log_3 A -$$

$$log 4 + log 20 - log 10 =$$

$$log \frac{4 \times 20}{10} = log 8$$

$$log 5 - log 2 + log 10 =$$

$$log \frac{5 \times 10}{2} = log 25$$
Positives on top,
Negatives on Bottom
$$\frac{\text{Vice Versa}}{\text{Vice Versa}}$$

$$Log A + Log B - Log C = log \left(\frac{AB}{C}\right)$$

$$log 5 - log 2 - log 10 =$$

$$log \frac{5}{2 \times 10} = (log \frac{1}{4})$$

$$log \left(\frac{A}{BC}\right) = Log A - Log B C$$

$$log \left(\frac{A}{BC}\right) = Log A - (Log B + Log C)$$

$$log \left(\frac{A}{BC}\right) = Log A - Log B - Log C$$

$$\log x + \log x = \log x + \log(x + 1) = \log(x + 2) + \log(x + 1) = \log(x + 2) + \log(x + 2) = \log(x + 2) + \log($$

$$\log x^{3} - \log x^{2} = \log(x^{2} - 1) - \log(x + 1) =$$

$$\log \frac{x^{3}}{x^{2}} = \log x$$

$$\log \frac{x^{2} - 1}{x + 1} =$$

$$\log \frac{(x + 1)(x - 1)}{(x + 1)} = \log(x - 1)$$
Subtract
$$\log \frac{x^{2} - 1}{x + 1} =$$

$$\log \frac{x^{2} - 1}{(x + 1)(x - 1)} = \log(x - 1)$$
Simplify

C12 - 8.4 - log5 = m, log7 = n, Notes

Given:

log5 = m

log7 = n

Solve in terms of m and n:

 $log25 = log5^2$ =2log5

log35 = log5 + log7

= m + n

log350 = log5 + log7 + log10

= m + n + 1

log5x = log5 + logx

= m + logx

 $log 0.49 = \log \frac{1}{100}$ = log 49 - log 100 $= log7^2 - 2$ =2log7-2

= 2n - 2

 $\log_5 7 = \frac{\log 7}{\log 5}$

Given:

log4 = a

log6 = b

Solve in terms of a and b:

log16 =

 $log4^2 =$

2log4 =

 $log2^4 =$ 4log2 =

log16 =

log24 =log6 + log4 =

2*a*

log2 = $log\sqrt{4} =$ $log4^{\frac{1}{2}} =$ $\frac{1}{2}log4 =$

log3 =

 $log\overline{6} - log2 =$

 $\log \frac{3}{2} = log3 - log2 = b - \frac{1}{2}a - \frac{1}{2}a =$

log 0.4 =

log4 - log10 =

C12 - 8.5 - De/Log Operation/Equation/Factoring Notes

$$log8 = 0.9031$$

$$log_4 7 = 1.4037$$

Calculator

See Left

Math, Alpha, Math

$$\log_5(x+1) = \log_5 7$$
 Delo
 $\log_5(x+1) = \log_5 7$
 $x+1=7$
 $x=6$

$$\log_5(x+1) = \log_5 7$$
 Delog both sides $x+1=7$ $x=6$

$$\log_{2}(x-2) + \log_{2}(x+1) = 2$$

$$\log_{2}(x-2)(x+1) = 2$$

$$\log_{2}(x^{2} - x - 2) = 2$$

$$x^{2} - x - 2 = 2^{2}$$

$$x^{2} - x - 2 = 4$$

$$x^{2} - x - 6 = 0$$

$$(x-3)(x+2) = 0$$

$$\log_2(x-2) + \log_2(x+1) = 2$$

$$\log_2(x^2 - x - 2) = \log_2 4$$

$$x^2 - x - 2 = 4$$

$$x^2 - x - 6 = 0$$

Or Turn a number into a log! $2 = \log_2 m$

$$2 = \log_2 m$$

$$2^2 = m$$

$$m = 4$$

$$2 = \log_2 4$$

$$\sqrt{(x-3)(x+2)} = \sqrt{x=3}$$

$$\log_2(x-2) - 2 = \log_2(x+1)$$

$$\log_2(x-2) + \log_2(x+1) = 2$$
Algebra

Reject Redundant!

$$\log_3(x-11) - \log_3(x-3) = 2$$

$$\log_3 \frac{x-11}{x-3} = 2$$

$$\frac{x-11}{x-3} = 3^2$$

$$\frac{x-11}{x-3} = 9$$

$$x-11 = 9(x-3)$$

$$x-11 = 9x-27$$

$$16 = 8x$$

$$2 \log_5 x + \log_5 x = 3$$
$$\log_5 x^2 + \log_5 x = 3$$
$$\log_5 x^2 \times x = 3$$
$$\log_5 x^3 = 3$$
$$x^3 = 5^3$$

Must Bring exponents up 1st!

$$(logx)^{2} - logx^{3} = 4$$

$$(logx)^{2} - 3logx = 4$$

$$m^{2} - 3m - 4 = 0$$

$$(m - 4)(m + 1) = 0$$

$$let m = log x$$

x > 3

C12 - 8.6 - Log Both Sides Notes

$$4 = 2^{x}$$

$$log4 = log2^{x}$$

$$log4 = xlog2$$

$$log4 = xlog2$$

$$\frac{log4}{log2} = x$$

$$log_{2} = x$$

$$log_{2} = x$$

$$log_{2} = x$$

$$log_{2} = x$$

$$log_{3} = xlog5$$

$$\frac{log3}{log5} = x$$

$$log_{5} = x$$

$$log_{5}$$

Before you log both sides!

$$3 = 2^x - 1$$
$$4 = 2^x$$

Add/Subtract First

$$8 = 2 \times 2^{x}$$
 $8 = 2 \times 2^{x}$ $4 = 2^{x}$ Or $log 8 = log (2 \times 2^{x})$ $log 8 = log 2 + log 2^{x}$

$$\begin{array}{c} 4 = 7^{2x+1} \\ log4 = log7^{2x+1} \\ log4 = (2x+1)log7 \\ log4 = 2xlog7 + log7 \\ \hline \\ log4 - log7 \\ \hline \\ 2log7 \\ \hline \\ x = \frac{log4 - log7}{2log7} \\ x = -0.29 \\ \end{array} \begin{array}{c} \text{Distribute} \\ \text{Combine x's on one side} \\ \text{Everything else on other side} \\ \hline \\ 4 = 7^{2x+1} \\ log_2^{2x-5} = log9^{x+2} \\ (2x-5)log2 = (x+2)log9 \\ 2xlog2 - 5log2 = xlog9 + 2log9 \\ 2xlog2 - xlog9 = 2log9 + 5log2 \\ x(2log2 - log9) = 2log9 + 5log2 \\ x(2log2 - log9) = 2log9 + 5log2 \\ \hline \\ x = \frac{2log9 + 5log2}{2log2 - log9} \\ \hline \end{array}$$

$$6 \times 3^{x} = 14^{2x-5}$$

$$log6 \times 3^{x} = log14^{2x-5}$$

$$log6 + log3^{x} = log14^{2x-5}$$

$$log6 + xlog3 = (2x - 5)log14$$

$$log6 + xlog3 = 2xlog14 - 5log14$$

$$2xlog14 - xlog3 = log6 + 5log14$$

$$x(2log14 - log3) = log6 + 5log14$$

$$x = \frac{\log 6 - \log 15}{2\log 14 - \log 3}$$

$$b^{\log_b x} = x$$

$$b^{\log_b x} = x$$

$$\log b^{\log_b x} = \log x$$

$$\log_b x \log(b) = \log x$$

$$\frac{\log_b x \log(b)}{\log b} = \frac{\log x}{\log b}$$

$$\log_b x = \frac{\log x}{\log b}$$

$$\log_b x = \log_b x$$

$$x = x$$

Rule 7 Proof

 $\label{lem:complete} \mbox{Remember: You may only log both sides if SAMD is complete. Bedmas backwards.}$

Remember: If you do log a product you must separate into an addition of logs.

Remember: If you log a sum you must use brackets

Remember: You may only de-log both sides if one log equals one log.

C12 - 8.6 - Word Problem Notes

How long to earn \$1500 on \$10000 at 10%/year?

How long to grow \$10000 to \$12000 compounded quarterly at 10%?

$$F = P\left(1 + \frac{r}{n}\right)^{tn}$$

$$12000 = 10000 \left(1 + \frac{0.1}{4}\right)^{4t}$$

$$1.2 = 1.025^{4t}$$

$$\log_{1.025} 1.2 = 4t$$

$$\log_{1.025} 1.2$$

$$4$$

$$t = 1.85 \ years$$

Find the half-life of a substance decaying to 20% of its original in 500 years?

$$F = P(r)^{\frac{t}{T}}$$

$$20 = 100 \left(\frac{1}{2}\right)^{\frac{500}{T}}$$

$$0.2 = 0.5^{\frac{500}{T}}$$

$$\log_{0.5} 0.2 = \frac{500}{T}$$

$$T = \frac{500}{\log_{0.5} 0.2}$$
Cross Multiply
$$T = 215.34 \ year$$

Find the number of compounding periods to grow \$10000 to \$16288.95 at 10% in 5 years.

$$F = P\left(1 + \frac{r}{n}\right)^{tn}$$

$$2 = 1\left(1 + \frac{0.1}{n}\right)^{5n}$$

$$y_1 = y_2$$
Find Intersection
$$n = 2 \quad ; Semi - annually$$

How long to triple your money at 10%/year?

$$F = P(1+r)^{t}$$

$$3 = 1(1+0.1)^{t}$$

$$3 = 1.1^{t}$$

$$\log_{1.1} 3 = t$$

$$T = 1.43 \text{ years}$$

An earthquake of magnitude 8 is 250 times as intense as an earth quake of what magnitude?

$$I = 10^{b-s}$$

$$250 = 10^{8-s}$$

$$\log_{10} 250 = 8 - s$$

$$s = 5.6 \text{ magnitude}$$

How long to grow 1000 Bacteria to 5000 at a continuous growth rate of 0.05?

$$F = Pe^{kt}$$

$$5000 = 1000e^{0.05t}$$

$$5 = e^{0.05t}$$

$$\frac{\ln_e 5}{0.05} = t$$

$$t = 32.2 ...$$

A substance has a half-life of 5 years. How long to be ten percent of its original?

$$F = P(r)^{\frac{t}{T}}$$

$$10 = 100 \left(\frac{1}{2}\right)^{\frac{t}{5}}$$

$$0.1 = 0.5^{\frac{t}{5}}$$

$$\log_{0.5} 0.1 = \frac{t}{5}$$

$$t = 16.61 \ years$$

C12 - 8.7 - Graph Log Notes

Graph: $y = \log_2 x$

$$y = 2^x$$

x	у
-1	$\frac{1}{2}$
0	1
1	2

x	у
$\frac{1}{2}$	-1
1	0
2	1

 $VA: \quad x = 0$

Domain: $x \ge 0$

Graph: $y = \log_2(x + 2) + 1$

$$y = 2^x$$

Left 2 Up 1

$$x + 2 = 0$$
$$x = -2$$
$$VA$$

 $\begin{aligned}
 x + 2 &> 0 \\
 x &> -2
 \end{aligned}$

Domain

C12 - 8.8 - Inverse Log Graphs Notes

Back the Other Way!

$$y = \log_2 x$$

$$x = \log_2 y$$

$$2^x = y$$

$$y = 2^x$$

$$f^{-1}(x) = 2^x$$

Remember: Inverse: Switch x and y
Remember: A diagonal reflection over

the line y = x

$$y = 2^{x+1} - 3$$

$$x = 2^{y+1} - 3$$

$$x + 3 = 2^{y+1}$$

$$\log(x+3) = (y+1)\log 2$$

$$\frac{\log(x+3)}{\log 2} = y+1$$

$$\log_2(x+3) = y+1$$

$$\log_2(x+3) = y$$

$$\log_2(x+3) - 1 = y$$

$$y = \log_2(x+3) - 1$$

$$f^{-1}(x) = \log_2(x+3) - 1$$

$$f^{-1}(x) = \log_2(x+3)$$

$$y = \log_2(x+3) - 1$$

$$f^{-1}(x) = \log_2(x+3)$$