$C12 - 8.1 - \log_b a = ? Definition HW$

Evaluate. Think of what power must you raise the base to in order to equal the "thing you are logging".

$$\log_2 8 = 3$$

$$\log_2 16 =$$

$$\log_3 9 =$$

$$\log_2 1024 =$$

$$\log_2 4 =$$

$$\log_2 64 =$$

$$\log_2 32 =$$

$$\log_3 27 =$$

$$log_4 16 =$$

$$\log_{1} 49 =$$

$$\log_{10} 100 =$$

$$-\log_2 16 =$$

$$\log_5 0 =$$

$$\log_0 3 =$$

$$\log_7 1 = \log_4 2 =$$

$$\log_2\left(\frac{1}{4}\right) =$$

$$\log_{\frac{1}{4}} \frac{1}{16} =$$

$$\log_{\frac{1}{2}} 8 =$$

Evaluate. Think of what power must you raise the base to in order to equal the "thing you are logging".

$$\log_3 3^2 =$$

$$\log_2 2^4 =$$

$$\log_4 4^3 =$$

$$\log_5 5^x =$$

$$\log_5 5^{78} =$$

$$\log_3 3^{\frac{1}{2}} =$$

$$\log_a a^2 =$$

$$\log_x x^5 =$$

Change the base of the "thing you are logging" to be the same as the base of the log, and evaluate as above.

$$log_2 4 =$$

$$\log_3 27 =$$

$$\log_5 125 =$$

$$\log_{6} 36 =$$

$$log_2 16 =$$

$$\log_8 512 =$$

$$\log_5 \sqrt[3]{5} =$$

$$\log_6 \frac{1}{6} =$$

Use your calculator to evaluate.

$$log 7 =$$

$$\log 0.05 =$$

$$log80 =$$

$$log0 =$$

$$\log(-2) =$$

Evaluate

$$\log_a a =$$

$$\log_x 1 =$$

$$\log_{2a} 4a^2 =$$

$$\log_b b^x =$$

$$\log_{2x} 8x^3 =$$

$$\log_e e^2 =$$

$$ln e^2 =$$

Evaluate

$$log\sqrt{10} =$$

$$log1 =$$

$$log 0.1 =$$

$$\log_{100} 10\ 000 =$$

C12 - 8.1 - $log_b a = c$ in Exp/Log Form HW

Express in exponential form

$$log_2 8 = 3$$

$$\log_5 25 = 2$$

$$\log_3 27 = 3$$

$$\log_a b = c$$

$$\log_6 1 = 0$$

$$\log_2\left(\frac{1}{2}\right) = -1$$

$$\log_{10} 1000 = 3$$

$$\log_4 2 = \frac{1}{2}$$

$$\log_{\frac{1}{4}}\left(\frac{1}{16}\right) = 2$$

$$\log_{\frac{1}{3}}9 = -2$$

$$\log_7(x+2) = y$$

$$\log 100 = 2$$

$$\log_4 1 = 0$$

$$1 = \log_5 5$$

$$\log_{64} 16 = \frac{2}{3}$$

$$q = \log_x z$$

$$\log_2 4 + 2 = 4$$

Express in logarithmic form

$$2^3 = 8$$

$$5^2 = 25$$

$$64 = 8^2$$

$$8^{\frac{1}{3}} = 2$$

$$2^6 = 64$$

$$10^{-2} = 0.01$$

$$a=b^c$$

$$6^{-2} = \frac{1}{36}$$

$$1000 = 10^3$$

$$4^{-2} = \frac{1}{16}$$

$$\frac{1}{125} = 5^{-3}$$

$$x^y = z$$

$$18^0 = 1$$

$$4^1 = 4$$

$$\left(\frac{1}{5}\right)^2 = \frac{1}{25}$$

C12 - 8.1 - $\log_b x = c$, $\log_x a = c HW$

Find x

$$\log_2(x) = 3$$

$$\log_4 x = 3$$

$$\log_5 x = 2$$

$$\log_4 x = \frac{1}{2}$$

$$\log_5 x = 0$$

$$\log_5 x = -2$$

$$\log_3 x = -2$$

$$\log_{\sqrt{2}} x = 4$$

$$\log_2(x+2) = 2$$
 $\log_3(x-5) = 2$

$$\log_3(x-5)=2$$

$$\log_{10}(x - 50) = 2$$

$$\log_5(20+x)=2$$

$$\log_5(x^2 + 50) = 3$$
 $\log_3(44 - x) = 4$ $\log_3(5x + 7) = 2$

$$\log_3(44 - x) = 4$$

$$\log_3(5x+7)=2$$

$$\log_5 2x = -5$$

$$\log_{x}(8) = 3$$

$$\log_x(144) = 2$$

$$\log_{x}(81) = 2$$

$$\log_x 5 = 1$$

$$\log_x 5 = 3$$

$$\log_x 125 = 3$$

$$\log_x \frac{1}{16} = 4$$

$$\log_{x}(64) = 3$$

$$\log_x 9 = \frac{1}{2}$$

$$\log_x 8 = \frac{2}{3}$$

$$\log_x 27 = \frac{3}{2}$$

$$\log_x \sqrt{27} = \frac{3}{2}$$

$$\log_x 4 = \frac{2}{3}$$

$$\log_x \frac{27}{8} = \frac{3}{2}$$

$$\log_x \frac{64}{27} = \frac{3}{2}$$

C12 - 8.1 - $\log_b a = x$ and Factoring HW

Solve

$$\log_4(16) = x$$

$$\log_8 16 = x$$

$$\log_2 64 = x$$

$$\log_2(8) = x$$

$$\log_{10} 100 = x$$

$$\log_7(343) = x$$

$$\log_4 \frac{1}{8} = x$$

$$\log_{\frac{1}{5}} 125 = x$$

$$\log_{81} 3 = x$$

$$\log_{16} 8 = x$$

$$\log_{\frac{1}{2}} 16 = x$$

$$\log_{\frac{1}{2}} 1 = x$$

$$\log_{\frac{1}{3}} \frac{1}{9} = x$$

$$\log_{\frac{1}{9}} \frac{1}{3} = x$$

$$\log_{\sqrt{2}} 4 = x$$

$$\log_2 \sqrt[4]{8} = x$$

$$\log_{2x} 16 = 2$$

$$log_{x+1}\,9=2$$

$$log_{x+2} 1 = 2$$

$$log_{x-1} 4 = 2$$

$$\log_{x+2} 9 = 2$$

C12 - 8.2 - Logs Restrictions HW

State Restrictions

$$\log x = 5$$

$$\log(x+1) = 3$$

$$\log_2(2x - 3) = 5$$

$$\log_2(-x) = 5$$

$$\log_2(3-x)=5$$

$$\log_x 3 = 7$$

$$\log_{x-1} 2 = 4$$

$$\log_3(x^2 - 1) = 5$$

$$\log_3(x^2 - 9) = 5$$

$$\log_3(x^2+4)=5$$

$$\log_x(x-2) = 5$$

$$\log_x(x+3) = 5$$

$$\log_2 x^2 = 4$$

$$2\log_2 x = 4$$

C12 - 8.3 - $\log a^m = m log a$ Change of Base HW

Bring Exponent down in front and vice versa/both where allowed. Multiply/Distribute if necessary. Get rid of fractions and decimals.

$$log6^3$$

$$log9^x$$

$$log 5^{\frac{1}{3}}$$

$$log\sqrt{5}$$

$$\log\left(\frac{1}{3}\right)$$

$$2log5^3$$

$$2log5^3$$

$$7log8^4$$

$$7log8^4$$

$$log2x^3$$

$$\log(2x)^3$$

$$logab^2$$

$$\log(ab)^2$$

$$2\log 3^{x-3}$$

$$2\log 3^{x-3}$$

$$log9^{x+1}$$

$$log3^{2x+5}$$

Change Forms

$$\frac{log8}{log2} =$$

$$\frac{\log_2 64}{\log_2 4} =$$

$$\log_3 81 =$$

$$log_5 25 =$$

$$log_9 27 =$$

$$\log_{16} 64 =$$

$$\frac{1}{\log_{81} 3} =$$

$$\frac{1}{\log_{64} 4} =$$

C12 - 8.3 - Rule 6 $\log_b^n a^n HW$

Square the base and the log and evaluate

$$\log_3 9$$

$$log_2 4$$

$$\log_5 125$$

$$log_7 49$$

Take the base and the log to the exponent -1 and evaluate

$$\log_{\frac{1}{2}} 8 =$$

$$\log_{\frac{1}{3}}9 =$$

$$\log_{\frac{1}{4}} \frac{1}{2} =$$

$$\log_{\frac{1}{2}} \frac{1}{4} =$$

Cube the base and the log

$$log_2 4 =$$

$$\log_3 4 =$$

Change the base to 3

$$\log_{9} 64 =$$

$$\log_{27} 8 =$$

$$\log_{\sqrt{3}} 2 =$$

Change the base to 4

$$log_2 4 =$$

$$\log_{16} 25 =$$

$$\log_{\sqrt[3]{4}} 3 =$$

C12 - 8.3 - Rule 6 $log_{b^n} a^n$ Equations HW

$$\log_2 x + \log_4 x = 3$$

$$2\log_3 x - \log_9 x^2 = 2$$

$$(\log_2 x)(\log_3 4) = 4$$

$$(\log_x 36)(\log_6 27) = 6$$

$$(\log_5 16)(\log_4 25) = x$$

$$(\log_5 x)(\log_4 25)(\log_7 16) = 8$$

C12 - 8.4 - $\log_b m + \log_b n = \log_b mn$, $\log_b m - \log_b n = \log_b \frac{m}{n}$ HW

Simplify, express as a single log

$$log3 + log4 =$$

$$\log_2 5 + \log_2 6 =$$

$$\log_3 20 - \log_3 4 =$$

$$2\log_4 8 - \log_4 16 =$$

$$log32 - 3log2 =$$

$$\log_2 5 + \log_2 3 + \log_2 4 =$$

$$\log_2 4 + \log_2 5 - 2\log_2 10 =$$

$$\log_3 4 + 2\log_3 20 - \log_3 10 =$$

$$log5 - log2 - log10 =$$

$$log5 - log2 + log10 =$$

$$log4 - log2 + log10 =$$

$$-log8 - log2 + log5 =$$

Express as an addition of logs

$$log(4 \times 3) =$$

$$log(2 \times 5 \times 7)$$

$$log4 =$$

$$log9 =$$

$$log10 =$$

$$log15 =$$

$$log21 =$$

$$log25 =$$

$$log30 =$$

$$log36 =$$

$$log20 =$$

Express as a subtraction of logs

$$\log\left(\frac{10}{3}\right) =$$

$$\log\left(\frac{3}{2}\right) =$$

$$log5 =$$

$$log7 =$$

$$log 0.1 =$$

C12 - 8.4 -
$$\log_b m + \log_b n = \log_b m n \log_b m - \log_b n = \log_b \frac{m}{n} HW$$

Express in terms of loga, logb, logc

$$logab =$$

$$\log\left(\frac{b}{c}\right) =$$

$$\log\left(\frac{a}{bc}\right) =$$

$$\log\left(\frac{ab}{c}\right) =$$

$$log100a^2b^3 =$$

$$\log_4 \frac{16a^2}{c} =$$

$$\log\left(\frac{a^3}{b\sqrt{c}}\right) =$$

$$\log \frac{c^2}{10a^2} =$$

$$\log(bc)^2 =$$

$$\log(a\sqrt{b}) =$$

$$\log(\sqrt{ab}) =$$

C12 - 8.4 -
$$\log_b m + \log_b n = \log_b mn \log_b m - \log_b n = \log_b \frac{m}{n} HW$$

Express in terms of log 3 and log 4.

$$log12 =$$

$$log36 =$$

$$log48 =$$

$$log120 =$$

$$\log \frac{9}{16} =$$

Simplify the expression.

$$\log(x+1) + \log 2 =$$

$$\log(x^2) - log x =$$

$$\log n^2 - 2\log \sqrt{n} =$$

$$\log \sqrt{m} + \log m^{\frac{3}{2}} =$$

$$\log_2 x - 2\log_2 8 =$$

$$\log_3 x + 2\log_3 4 =$$

$$\log(x+2) + \log(x+3) =$$

$$\log(x^2 + 5x + 6) - \log(x + 3) =$$

C12 - 8.4 - log2 = m, log3 = n, HW

Given:

log2 = m

log3 = n

Solve in terms of m and n:

log4 =

log6 =

log8 =

log24 =

log18 =

log12 =

log20 =

log600 =

log 0.3 =

log2x =

log9x =

log 0.02 =

log1.5 =

 $log 0.\overline{6}$

log 1.08 =

log0.06 =

log 0.54 =

log5 =

 $\log_{\frac{1}{2}} 216$

 $\log_{12} 72 =$

 $\log_6 1728$

Given:

log9 = a

log25 = b

Solve in terms of a and b:

log3 =

log15 =

 $\log \frac{3}{5} =$

log300 =

 $log 1.\, \bar{6} =$

C12 - 8.5 - Log Operation HW

Solve using your calculator or your brain.

$$log5 =$$

$$log10 =$$

$$log240 =$$

$$log0 =$$

$$log4528 =$$

$$log1 =$$

$$log 0.2 =$$

$$log20 =$$

$$log - 1 =$$

$$log1000 =$$

$$log9 =$$

$$log 0.1 =$$

$$log10^{12345} =$$

$$log_5 12 =$$

$$log_8 3 =$$

$$log_2\,8192 =$$

$$\log_2 128 =$$

$$log 12^{3} =$$

$$log 25^2 =$$

$$log100^2 =$$

$$log 10^{-2} =$$

$$2log6^4 =$$

$$-log5^2 =$$

$$3log6^{-4} =$$

$$2log10^{\frac{1}{2}} =$$

$$3log12 =$$

$$2log100 =$$

$$-2log10 =$$

Expand: Bring Exponent down in front and distribute

$$log3^{x+4} =$$

$$log8^{2x-1} =$$

$$log 8^{-x+1} =$$

$$2log4^{x+2} =$$

Remove a greatest common Factor of x

$$2xlog5-xlog3=\\$$

$$xlog7 - xlog2 =$$

$$xlog20 - xlog2 =$$

C12 - 8.5 - Log = Log De-Log Equation HW

$$\log 2x = \log(x+1)$$

$$\log_2 x = \log_2(3 - x)$$

$$\log x = \log(2x + 1)$$

$$\log x = \log(x^2 - 2)$$

$$log 2x = \log(x - 3)$$

$$\log_5(4x+3) = \log_5(3x-2)$$

$$log6 = logx - log3$$

$$log24 = logx + log3$$

$$log8 = log2 - logx$$

$$\log x + \log x = \log 4$$

$$\log_4 x + \log_4 x^2 = \log_4 27$$

$$\log_7 3x = \log_7(x^2 - 4)$$

$$\log x^2 + \log x^2 = \log 81$$

$$3 \log x + \log x = \log 256 \qquad \qquad 2 \log x + \log x^2 = \log 9$$

$$2\log x + \log x^2 = \log 9$$

$$\log x^2 - \log x = \log 5$$

$$3\log_7 x + \log_7 x^2 = \log_7 32$$
 $5\log_9 x - \log_9 x^2 = \log_8 8$

$$5 \log_9 x - \log_9 x^2 = \log_8 8$$

$$3\log_9 x + \log_9 x^2 = \log_9 32$$

$$\log_3(x-2) + \log_3(x-3) = \log 12$$

$$\log_3(6x+1) - \log_3(x-1) = \log 5$$

$$\log_3(3x+1) - \log_3(x-2) = \log 4$$

C12 - 8.5 - Log Equation HW

$$\log_2 x + \log_2 x = 2$$

$$\log_4 x = 3 - \log_4 x$$

$$\log_2 x + \log_2 x^2 = 6$$

$$2\log_2 x - \log_2(x - 2) = 3$$
 $\log_x 5 + \log_x 2 = 3$

$$\log_x 5 + \log_x 2 = 3$$

$$\log_{x^2} 128 = \log_{x^2} 2 + 3$$

$$\log_5(x^2 - 1) = \log_5(x + 1) + 2 \qquad \qquad \log_{x+1} 27 - \log_{x+1} 3 = 2$$

$$\log_{x+1} 27 - \log_{x+1} 3 = 2$$

$$\log_2 5x - \log_2(x+1) = 2$$

$$\log_{x-1} 1 + \log_{x-1} 4 = 2$$

$$\log_2(-x) + \log_2(3-x) = 2$$

$$\log_2(-x) + \log_2(3-x) = 2$$
 $\log_2 x - 2 = -\log_2(x+2)$

$$\log_3 2x - \log_3(x - 2) = 1$$

$$\log_3(3x - 12) - \log_3 x = 2$$

C12 - 8.5 - Log Equation HW

$$\log_3 2x - \log_3(x-2) = 1$$

$$\log_3(3x - 12) - 2 = \log_3 x$$

$$\log_2 x + \log_2(x - 7) = 3$$

$$\log_2 x + \log_2(x+1) = 1$$

$$\log_2(2x+4) = \log_2(x+2) + 2$$

$$\log_2 x + \log_2(x+4) = 5$$

$$\log_3 x + \log_3(x+2) = 1$$

$$\log_3 x + \log_3 (x - 6) = 3$$

$$\log_6 x + \log_6 (x - 5) = 2$$

$$\log_3(x^2 + 5x + 6) - \log_3(x + 2) = 1$$

$$2\log_5(x+2) - \log_5(x+2) = 1$$

$$\log_7(2x^2 + 7x + 6) - \log_7(x + 2) = 2$$

C12 - 8.5 - Logs Factoring WS

$$(log x)^2 + log x = 2$$

$$(logx)^2 = logx^5 + 4$$

$$2(\log x)^2 - 3\log x = -1$$

$$(\log x)^2 - 9 = 0$$

$$(log x)^2 = 4$$

$$(\log x)^2 - 7 = \log x^6$$

C12 - 8.6 - Log Both Sides HW

Solve for x

$$4 = 2^{x}$$

$$12 = 2^x$$

$$99 = 10^x$$

$$38 = 6^{x}$$

$$4 = 3^{x}$$

$$14 = 2^x$$

$$267 = 10^x$$

$$0.2 = 6^{x}$$

$$5 = 4^x$$

$$30 = 5^x$$

$$27 = 5^x$$

$$9^x = 76$$

$$7 = 2^{2x}$$

$$80 = 3^{2x}$$

$$1080 = 2^{5x}$$

$$180 = 5^{\frac{x}{2}}$$

$$5=2^{\frac{1}{x}}$$

$$7^{\frac{2}{x}} = 9$$

$$18 = 2^{\frac{3}{x+1}}$$

$$40 = 5(3)^x$$

$$60 = 3(2)^x$$

C12 - 8.6 - Log Both Sides HW

$$4^{x+1} = 12$$

$$25 = 3^{x-2}$$

$$126 = 3^{x+1}$$

$$80 = 2^{3x-1}$$

$$2^{3-x} = 5^{x-2}$$

$$2^{2x-3} = 8^{x-1}$$

$$3^{2x+1} = 5^{x+1}$$

$$120 = 6(2)^{x+1}$$

$$80 = 4(2)^{3x-1}$$

$$25 = 4(3)^x$$

$$62 = 5(3)^{2x-1}$$

C12 - 8.6 - Rule 7 $b^{\log_b x} = x \log HW$

$$2^{\log_2 5} = x$$

$$3^{\log_3 8} = x$$

$$2^{2\log_4 6} = x$$

$$3^{2\log_3 4} = x$$

$$4^{\log_2 6} = x$$

$$2^{\log_4 32} = x$$

$$2^{logx} = \frac{1}{4}$$

$$2^{-logx} = 8$$

$$3^{log2x} = \frac{1}{27}$$

C12 - 8.6 - Word Problem Notes

How long to earn \$2000 on \$50000 at 8%/year?

How long to double your money at 5%/year?

How long to grow \$100 to \$2000 compounded semi-annually at 6%?

An earthquake of magnitude 7 is 300 times as intense as an earth quake of what magnitude?

How long to grow 500 Bacteria to 10000 at a continuous growth rate of 0.07?

Find the half-life of a substance decaying to 15% of its original in 80 years?

A substance has a half-life of 8 years. How long to be twenty percent of its original?

C12 - 8.7 - Graph Log HMK

Graph and state Vertical Asymptote and Domain

 $y = \log_2 x$

$$y = \log_3 x$$

 $y = \log_2 x + 1$

$$y = \log_3(1 - x)$$

 $y = -\log_2 x$

$$y = 2\log_3(x+2) - 3$$

 $y = -\log_3(2x + 2)) + 1$

C12 - 8.8 - Find Inverse HW

Determine the inverse of the following

$$y = 8^{x}$$

$$y = 10^{x-2}$$

$$y = 5^{2x}$$

$$y = 3^{x+3}$$

$$y = 6^x + 7$$

$$y = 6^x + 7 y = 2^{2x-3} - 5$$

$$y = \log_4 x$$

$$y = \log_5(2x + 2)$$

$$y = \log_2(x+3)$$

$$y = 5 - \log_3 2x$$

$$2 + y = \log_2(x)$$