C12 - 3.1 - Long Division WS

Divide using long division and state the division statement and the multiplication statement. Find Remainder.

$$(x-2)$$
 $x^2 + 2x - 8$

$$(x-3)$$
 $x^2+4x-22$

$$(x-3)$$
 $\sqrt{x^3-2x^2-5x+6}$ Fully Factor

$$(x+2)$$
 $3x^2+5x-2$

$$(x+2)$$
 $3x^2 + 5x - 2$ $(x+4)$ $2x^2 + 9x - 1$ $(x+5)$ $x^2 + 9x + 20$

$$(x+5)$$
 $x^2+9x+20$

C12 - 3.1 - Synthetic Division WS

Divide using synthetic division and state the division statement and the multiplication statement. Fully Factor.

$$\frac{x^2+2x-8}{x-2}$$

$$\frac{x^3 - 2x^2 - 5x + 6}{x + 2}$$

$$\frac{x^3 + 2x^2 - 5x - 7}{x + 2}$$

$$\frac{x^3 + 2x^2 - 4x - 8}{x + 2}$$

$$\frac{x^3 + x^2 - 4x - 4x}{x - 2}$$

$$\frac{x^3 + 6x^2 + 8}{x + 3}$$

$$\frac{x^3 + 2x^2 - 4x - 8}{x + 2} \qquad \frac{x^3 + x^2 - 4x - 4}{x - 2} \qquad \frac{x^3 + 6x^2 + 8}{x + 3} \qquad \frac{x^3 - 2x^2 - 5x + 8}{(x - 3)}$$

C12 - 3.2 - Factor/Remainder Theorem Synthetic Long Division WS

Is the following a factor of the polynomial. Test by Inspection. Factor using synthetic or long division.

$$(x-1)$$
 x^3-2x^2-5x+6

$$(x+3)$$
 $x^3 + x^2 - 4x - 4$

$$(x+2)$$
 x^3-2x^2-5x+6

$$(x-3)$$
 $x^3 + x^2 - 4x - 4$

$$(x-2) x^3 + 2x^2 - 4x - 8$$

$$(x+3)$$
 $x^3 + 6x^2 + 12x + 8$

$$(x-2)$$
 x^3-2x^2-5x+7

$$(x+1)$$
 $x^3 + x^2 - 4x - 1$

$$(x-3) x^3 - 2x^2 - 5x - 2$$

$$(x+2)$$
 $x^3 + x^2 - 4x + 2$

C12 - 3.3 - Factoring WS

Factor and state the x and y-intercepts and draw a graph

$$x^2 - 4x + 3$$

$$x^3 - 2x^2 - 5x + 6$$

$$-x^3 - 2x^2 + 5x + 6$$

C12 - 3.3 - Factoring WS

Factor and state the x and y-intercepts and draw a graph

$$x^3 + 2x^2 - 4x - 8$$

$$x^4 - 2x^3 + 2x - 1$$

$$x^3 - 3x + 2$$

$$-x^3 + 3x^2$$

C12 - 3.4 - Graph Factored Form WS

$$y=a(x\pm\#)(x\pm\#)(x\pm\#)\dots$$

Find the leading term, and graph. Sketch a graph and label x and y intercepts.

$$f(x) = (x+1)(x-2)(x+2)$$

$$f(x) = (x-2)(x-1)(x+4)$$

$$f(x) = -(x-1)(x+2)(x-3)$$

$$f(x) = (x+2)^2(x-2)$$

$$f(x) = (x-1)^2(2-x)$$

$$f(x) = -(x+2)^3(1-x)$$

Find the leading term, and graph. Sketch a graph and label x and y intercepts.

$$f(x) = -(x+1)(x-2)(x+2)$$

$$f(x) = -(x+1)(x-1)(x+4)$$

$$f(x) = (x-1)^2(x+2)(x-3)^3$$

$$f(x) = (x+2)(x+2)(x-2)(x-2)$$

$$f(x) = x(x-1)^2(x+2)$$

$$f(x) = -x(x+2)^3(x-1)$$

C12 - 3.4 - x - int, y - int to Factored form WS

Find Equation in factored form, find the leading term, and graph.

$$x - int = 1,3$$
$$y - int = 3$$

$$y = a(x \pm \#)^\# (x \pm \#)^\# (x \pm \#)^\# \dots$$

$$x - int = 1,3$$
$$y - int = 6$$

$$x - int = -4, -2, 1$$
$$y - int = 4$$

$$x-int=-2,0,2$$

$$x - int = -1, 1, 1$$
$$y - int = 1$$

$$x - int = -2,1,3$$
$$y - int = 6$$

$$x - int = -2, -2, 2$$

 $y - int = -8$

$$x - int = -2, -2, -2$$

 $y - int = 4$

C12 - 3.5 - Open Rectangular Box Cut Side x WS

An open rectangular box is made by cutting equal lengths from each corner of a 10 cm by 8 cm rectangular piece of cardboard, then folding up the sides. Find the length of the square that must be cut from each corner so the box has a volume of $48 \ cm^3$. And find Max Volume. x=1,2, V=52.52

C12 - 3.5 - Word Problems

An open rectangular box is made by cutting equal lengths from each corner of a 4 cm by 6 cm rectangular piece of cardboard, then folding up the sides. Find the length of the square that must be cut from each corner so the box has a volume of 8 cm^3 . And find Max Volume. x=1, V=8.45

5 cm by 7 cm: volume of 6 cm^3 . x=2, V=15.02

9 cm by 11 cm: volume of 45 cm^3 . x=3, V=72.42

A box of $1 cm^3$ length's are increased by the same amount. Find the increase, the new dimensions and Volume if the new volume is 8 times larger. x=1. 27 times larger. x=2

A box of 1x2x3 cm length's are increased by the same amount. Find the increase, the new dimensions and Volume if the new volume is 20 times larger. x=3. 4x5x6, V=120

1x2x3, 35 times larger. x=4, 5x6x7, V=210

1x2x3, 10 times larger. x=2, 3x4x5, V=210

A cylinder with the same radius as its height. Find the dimensions if the Volume is π . 8π . 27π

A cylinder with radius and height both 2 cm. Find the dimensions if both are increased by the same amount to have a Volume of 64π . x = 2. Volume of 27π . x=1

A cylinder with radius 2 cm and height 3 cm. Find the dimensions if both are increased by the same amount to have a Volume of 36π . x=1. Volume of 80π . x=2. Volume of 150π . x=3

A company has the following revenue and cost functions on units: $R(x) = x^3$ and $C(x) = 6x^2 - 11x - 6$. Find the number of units to break even. To profit \$24. To profit \$60. To profit \$720.