C12 - 3.5 - Open Rectangular Box Cut Side x Notes

An open rectangular box is made by cutting equal integer lengths from each corner of a 12 cm by 15 cm rectangular piece of cardboard, then folding up the sides. Find the length of the square that must be cut from each corner so the box has a volume of $162 \ cm^3$. And find length to cut for Max Volume and find Max Volume.

let x = length to cut

 $Volume = length \times width \times height$

$$V = (12 - 2x)(15 - 2x)x$$

$$162 = (12 - 2x)(15 - 2x)(x)$$

$$162 = 180x - 54x^2 + 4x^3$$

$$0 = 4x^3 - 54x^2 + 180x - 162$$

$$0 = 2x^3 - 27x^2 + 90x - 81$$

Potential Factors: The factors of 81: $\pm 17, \pm 9, \pm 3, \pm 1$

Solve by inspection:

Check:
$$x = 1, 3$$

$$f(x) = 2x^3 - 27x^2 + 90x - 81$$

$$f(3) = 2(3)^3 - 27(3)^2 + 90(3) - 81$$

$$f(3) = 54 - 243 + 270 - 81 = 0$$

Domain: x > 0, x cant be negative! x < 6, Cant cut 2 6's of f a 12!

We need to reject 6 and greater so we don't get negatives lengths.

$$2x^2 - 21x + 27$$
$$(2x - 3)(x - 9)$$

Reject non-integers

$$l = 15 - 2x$$
 $w = 12 - 2x$ $h = x$
 $l = 15 - 2(3)$ $w = 12 - 2(3)$ $h = 3$
 $l = 9$ $w = 6$

$$V = lwh$$

$$V = 9 \times 6 \times 3$$

$$V = 162 cm^{2}$$

