C11 - 1.1 - Arithmetic Means Notes

Write the first terms 5 of the sequence

$$2 + 3 = 5$$

 $5 + 3 = 8$
...

 t_1 = 1st term (aka: "a or u_1 ") d = common difference t_n = term n, every term n = Term #, or # of terms

$$t_{2} = 2, t_{5} = -4$$
 Logic
$$-d + d + d + d$$

$$t_{1} - t_{2} - t_{3} - t_{4} - t_{5}$$

$$d = -2$$

$$OR \qquad \boxed{t_n = t_1 + (n-1)d}$$

$$t_2 = 2, t_5 = -4$$
 Systems of Equations
$$t_n = t_1 + (n-1)d \qquad t_n = t_1 + (n-1)d \\ t_2 = t_1 + (2-1)d \qquad t_5 = t_1 + (5-1)d \\ 2 = t_1 + d \qquad -4 = t_1 + 4d \\ t_1 = 2 - d \longrightarrow -4 = (2-d) + 4d \\ -4 = 2 + 3d \\ t_1 = 4$$

$$2-2=0$$

 $0-2=-2$
...
 $2+2=4$

$$t_7 = 26, t_{95} = 378$$
 Logic

$$26 + 88d = 378$$
 95 - 7 = 88

$$-26 - 26$$
 88d = 352

$$\frac{88d}{88} = \frac{352}{88}$$

$$t_n = t_1 + (n-1)d
t_7 = t_1 + (7-1)(4)
26 = t_1 + 24$$

$$t_n = t_1 + (n-1)d
t_2 = 2 + (2-1)(4)$$

$$t_2 = 6$$

$$26 - 4 = 22$$
 $22 - 4 = 18$
 $18 - 4 = 14$
 $14 - 4 = 10$
...

C11 - 1.1 - Arithmetic Sequences Notes

2,5,8 ...
$$d = ?$$
 $t_n = ?$ $t_{10} = ?$ $t_n = 53, n = ?$

$$d = ?$$

$$t_n = ?$$

$$t_{10} = ?$$

$$t_n = 53, n = ?$$

$$t_1 = 2$$

$$d = t_n - t_{n-1}$$
 $d = t_n - t_{n-1}$
 $d = 8 - 5$ $d = 5 - 2$

$$d = t_n - t_{n-1}$$

$$d = 5 - 2$$

Difference

$$d = t_n - t_{n-1}$$

A term subtracted by the term before it $t_{n-1} = term \ before \ t_n$

$$d=3$$

$$d = 3$$

Arithmetic: d must always be the same

Find the General term $t_n = ?$

$$t_n = t_1 + (n-1)d$$

 $t_n = 2 + (n-1)3$

$$t_n = 2 + 3n - 3$$

$$t_n = 2 + 3n - 3$$

$$t_n = 3n - 1$$

General term formula

$$t_n = t_1 + (n-1)d$$

The first term plus'n - 1' differences

What is the tenth term t_{10} ?

$$t_n = 3n - 1$$

$$t_{10} = 3(10) - 1$$

$$t_{10} = 29$$

Check your answer: 2,5,8,11,14,17,20,23,26,29

Or, Start from beginning

$$t_n = t_1 + (n-1)d$$

$$t_{10} = 2 + (10 - 1)3$$

$$t_{10} = 2 + 27$$

$$t_{10} = 29$$

Remember: You could have also added the common difference repeatedly

53 *is what term*, $t_n = 53$, n = ?

$$t_n = 3n - 1$$

$$53 = 3n - 1$$

$$+1 + 1$$

$$54 = 3n$$

$$\frac{54}{3} = \frac{8n}{3}$$

Check your answer:

2,5,8,11,14,17,20,23,26,29,32,35,28,41,44,47,50,53

C11 - 1.2 - Arithmetic Series Notes

2,5,8 ...
$$s_{12} = ?$$

 $s_n = sum \ of \ n \ terms$

$$t_1$$
, t_2 , t_3 , t_4 , t_{12}

$$t_1 = 2$$

$$d = t_n - t_{n-1}$$
 $d = t_n - t_{n-1}$
 $d = 8 - 5$ $d = 5 - 2$

What is the sum of the first twelve terms s_{12} ? $s_{12} = ?$, n = 12.

$$s_n = \frac{n}{2}(2t_1 + (n-1)d)$$

$$s_{12} = \frac{12}{2}(2(2) + (12-1)3)$$

$$s_{12} = \overline{6(4 + (11)3)}$$

$$s_{12} = 6(4 + 33)$$

$$s_{12} = 6(4+33)$$

$$s_{12} = 6(37)$$

$$s_{12} = 222$$

Check your answer: 2 + 5 + 8 + 11 + 14 + 17 + 20 + 23 + 26 + 29 + 32 + 35 = 222

 $s_n = \frac{n}{2}(2t_1 + (n-1)d)$

OR

$$s_{n} = \frac{n}{2}(t_{1} + t_{n})$$

$$t_{n} = 3n - 1$$

$$t_{12} = 3(12) - 1$$

$$s_{12} = 6(2 + 35)$$

$$s_{12} = 222$$

$$s_n = \frac{n}{2}(t_1 + t_n)$$

Sum of "n" terms formula: if t_n is known.

Sum of "n" terms

 t_n is not known.

formula: if

C11 - 1.3 - Geometric Means Notes

Write the first terms 5 of the sequence

$$t_1 = 2, r = 3$$
 $x = 3$
 $x = 2$
 $x = 3$
 x

 t_1 = 1st term (aka: "a or u_1 ") r = common ratio t_n = term n, every term n = Term #, or # of terms

$$t_2 = 9, t_5 = 243$$
 $t_1 = 2, t_5 = 162$
$$9r^3 = 243 \qquad 5 - 2 = 3$$

$$2r^4 = 162 \qquad 5 - 1 = 4$$

$$r^3 = 27 \qquad r^4 = 81$$

$$r = 3$$

$$3, 9, 27, 81, 243$$

$$r = \pm 3$$

$$2, 6, 18, 54, 162$$

$$2, -6, 18, -54, 162$$

C11 - 1.3 - Geometric Sequences Notes

3,6,12 ...
$$t_n = ?$$
 $t_n = ?$ $t_n = 768, n = ?$

$$r = ?$$

$$t_n = ?$$

$$t_5 = ?$$

$$t_n = 768, n = ?$$

$$t_1 = 3$$

$$r = \frac{t_n}{t_{n-1}} \qquad r = \frac{t_n}{t_{n-1}}$$

$$r = \frac{6}{3} \qquad r = \frac{12}{6}$$

$$r = \frac{t_n}{t_{n-1}}$$

A term divided by the term before it

$$t_{n-1} = term\ before\ t_n$$

$$r=2$$

Geometric: r must always be the same

Find the General term $t_n = ?$

$$t_n = t_1 r^{n-1}$$

$$t_n = 3(2)^{n-1}$$

General term formula

$$t_n = t_1 r^{n-1}$$

The first term times 'r - 1' differences

What is the fifth term t_5 ? $t_5 = ?$, n = 5.

$$t_n = 3(2)^{n-1}$$

$$t_5 = 3(2)^{n-1}$$

$$t_5 = 3(2)^{5-1}$$

$$t_5 = 3(2)^4$$

$$t_5 = 48$$

Check your answer: 3,6,12,24,48

Or, Start from beginning

$$t_n = t_1 r^{n-1} t_5 = 3(2)^{5-1} t_5 = 48$$

Remember: You could have also multiplied by the common ratio repeatedly

divide both sides by 3

The number 768 is what term? $t_n = 768$, n = ?

$$t_n = 3(2)^{n-1}$$

$$768 = 3(2)^{n-1}$$

$$256 = 2^{n-1}$$

$$2^{8} = 2^{n-1}$$

$$2^8 = 2^{n-1}$$
$$8 = n - 1$$

Change of base:
$$256 = 2^8$$

Check your answer: 3,6,12,24,48,96,192,384,768

C11 - 1.4 - Geometric Series Notes

3,6,12 ...
$$s_8 = ?$$
 $s_\infty = ?$

$$s_8 = ?$$

$$s_{\infty} = ?$$

 $s_n = sum \ of \ n \ terms$

$$t_1 = 3$$

$$r = \frac{t_n}{t_{n-1}}$$
$$r = \frac{6}{3}$$

$$r = \frac{t_n}{t_{n-1}}$$
$$r = \frac{12}{\epsilon}$$

$$r=2$$

$$r=2$$

What is the sum of the first eight terms s_8 ? $s_8 = ?$, n = 8.

$$s_n = \frac{t_1(1 - r^n)}{1 - r}$$

$$s_8 = \frac{3(1 - 2^8)}{1 - 2}$$

$$s_n = \frac{t_1(1-r^n)}{1-r}$$

 $s_n = \frac{t_1(1-r^n)}{1-r}$ Sum of "n" terms formula (if number of terms is known)

Check your answer: 3 + 6 + 12 + 24 + 48 + 96 + 192 + 384 = 765

$$s_{n} = \frac{t_{1} - rt_{n}}{1 - r}$$

$$t_{n} = 3(2)^{n-1}$$

$$t_{8} = 3(2)^{8-1}$$

$$t_{8} = 3(2)^{7}$$

$$t_{8} = 3(128)$$

$$t_{8} = 3(128)$$

$$t_{8} = 384$$

$$s_n = \frac{t_1 - rt_n}{1 - r}$$

Sum of "n" terms formula (if last term t_n is known)

What is the sum of an infinite number of terms?

$$r=2$$

Check your answer: $3 + 6 + 12 + 24 + 48 + 96 + 192 + 384 + 768 + 1536 + 3072 + \dots = \infty$

C11 - 1.5 - Infinite Geometric Sequences Notes

$$s_{\infty} = ?$$

What is the sum of the infinite sequence?

$$t_1 = 8$$

$$r = \frac{t_n}{t_{n-1}}$$

$$r = \frac{4}{8}$$

$$r = \frac{1}{2}$$

$$r = \frac{t_n}{t_{n-1}}$$

$$r = \frac{2}{4}$$

$$r = \frac{1}{2}$$

$$-1 < r < 1$$

$$-1 < \frac{1}{2} < 1$$

$$s_{\infty} = \frac{t_1}{1 - r}$$

$$s_{\infty} = \frac{8}{1 - \frac{1}{2}}$$

$$s_{\infty} = \frac{t_1}{1 - r}$$

Sum of "n" terms formula (infinite number of terms)

$$s_{\infty} = \frac{6}{\frac{1}{2}}$$

$$s_{\infty} = 16$$

Check your answer:
$$8 + 4 + 2 + 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = 15.9375 \approx 16$$

8,16,32 ...

$$s_{\infty} = 3$$

What is the sum of the infinite sequence?

$$\frac{256}{t_c}$$
, ...

 $t_1 = 8$

$$r = \frac{t_n}{t_{n-1}}$$

$$r = \frac{16}{8}$$

$$r = \frac{t_n}{t_{n-1}}$$

$$r = \frac{32}{16}$$

$$(r = 2)$$

Check your answer: $8 + 16 + 64 + 128 + 256 + 512 + 1024 + 2048 + \dots = \infty$

C11 - 1.6 - Sigma Notation - Notes

Find the sum of the terms

Arithmetic

$\sum_{k=1}^{4} 2k = ?$			6,	8
k=1	k=1	k=2	k=3	k=4
d	2k = 2(1) = 2	2k = 2(2) = 4	2k = 2(3) = 6	2k = 2(4) = 8

$$s_4 = 2 + 4 + 6 + 8 = 20$$

Steps

Put in k = bottom number the equation Put in k + 1 (bottom # plus 1) Repeat until k = top number

k	2 <i>k</i>
1	2
2	4
3	6
4	8

Arithmetic

$$\sum_{k=1}^{100} 2k = ?$$

$$s_n = \frac{n}{2}(2t_1 + (n-1)d)$$

$$\sum_{k=1}^{100} 2k = ?$$

$$s_{100} = \frac{100}{2}(2(2) + (100 - 1)2)$$

$$s_{100} = 10100$$

$$s_n = \frac{\pi}{2}(2t_1 + (n-1)d)$$

of terms = n - k + 1

$$= \text{Top # minus Bottom # } + 1$$

$$n = 100 - 1 + 1$$

Geometric

$$\sum_{k=2}^{6} 8(\frac{1}{2})^{k-1} = ?$$
Always r

Not Always t1

Not Always t1

$$4 + 2 + 1 + \frac{1}{2} + \frac{1}{4} = \boxed{7.75}$$

$$s_{n} = \frac{6 - 2 + 1}{n = 5}$$

$$s_{n} = \frac{t_{1}(1 - r^{n})}{1 - r}$$

$$s_{n} = \frac{t_{1}(1 - r^{n})}{1 - r}$$

$$s_{5} = \frac{4\left(1 - \left(\frac{1}{2}\right)^{5}\right)}{1 - \left(\frac{1}{2}\right)}$$

$$s_{5} = 7.75$$

Infinite Geometric

$$\sum_{k=2}^{\infty} 3(2)^{k-1} = ? \qquad \frac{4}{2} \qquad \frac{1}{2}, \qquad \frac{\frac{1}{2}}{4}$$

$$r = \frac{2}{4} \qquad r = \frac{1}{2}$$

$$r = \frac{1}{2} \qquad -1 < r < 1$$

$$-1 < \frac{1}{2} < 1$$

$$s_{\infty} = \frac{t_1}{1 - r}$$

$$s_{\infty} = \frac{4}{1 - \left(\frac{1}{2}\right)}$$

$$s_{\infty} = \frac{4}{\frac{1}{2}}$$

$$s_{\infty} = 4 \times \frac{2}{1}$$

$$s_{\infty} = 8$$

C11 - 1.8 - Bouncing Ball Notes (up 60%)

A ball rolls off a building 15 m tall. After each bounce, it rises to 60% of the previous height.

How high does the ball bounce after the 1st, 2nd bounce?

Height After 1st Bounce

$$15 \times 0.6 = 9 \, m$$

Height After 2nd Bounce

$$9 \times 0.6 = 5.4 \, m$$

After $1st = t_2$ After $2nd = t_3$

How high does the ball bounce after the *n*th bounce? (Find the general formula)

$$t_n = t_1 r^{n-1}$$

$$t_n = t_1 r^{n-1}$$

$$t_n = 15(0.6)^{n-1}$$

How high does the ball bounce after the 4th bounce. $|t_5|$

$$t_n = t_1(r)^{n-1}$$

$$t_5 = 15(0.6)^{5-1}$$

$$t_5 = 15(0.6)^4$$

$$t_5 = 1.94 \text{ m}$$

$$4 \rightarrow 5!$$

After 4th bounce = t_5

How high does the ball bounce after the 10th bounce. t_{11}

$$t_n = t_1 r^{n-1}$$

$$t_{11} = 15(0.6)^{11-1}$$

$$t_{11} = 15(0.6)^{10}$$

$$t_{11} = 0.09 m$$

After 10th bounce = t_{11}

What is the total vertical distance the ball has travelled when it hits the ground for the 5th bounce? $| s_5 = ?$

$$s_n = \frac{t_1(1 - r^n)}{1 - r}$$

$$s_5 = \frac{15(1 - (.6)^5)}{1 - .6}$$

$$s_5 = \frac{15(0.87)}{.4}$$

$$s_5 = 34.6 m$$

 $34.6 \times 2 - 15 = 54.2 \, \text{m}$

If it bounces forever, what is the total vertical distance travelled?

$$s_{\infty} = \frac{t_1}{1 - r}$$

$$h_{\infty} = \frac{h_1}{1 - r}$$

$$h_{\infty} = \frac{15}{1 - 0.6}$$

$$h_{\infty} = \frac{15}{0.4}$$

$$h_{\infty} = 37.5 \text{ m}$$

$$37.5 \times 2 - 15 = 60 \text{ m}$$

Double it to account for rise heights and subtract the initial height (double counted)