Find missir	ng terms	of the se	quence.								
2, 4,	6,	,		,		4,	,	-2,			,
8, 14,	20,	,		,		-7,		3,			,
11, 6,	1, _	,		-		7,	,		-32,		
2, -4,	-10, _	,		_							
-8, -5,	-2, _			-		4,		,	25,	,	
$\frac{1}{2'}$ $\frac{3}{2'}$	<u>5</u> 2'			<u> </u>							
0.33, 0.34	, 0.35,			_, .		13,	,	,		_, 81	
1/2' 1/4'	0,			, _							
x, x + 1, x	+ 2,	,		,			or x , and m		rms		
			, 8,	10,	12	x + 1, .	3x - 1, $2x$	+ 3,	,	3,5,7, x=2	
5,		,	20,	25,							
2,		,	8,	10,		2x + 2,	,	7 <i>x</i> -		5x + 5, 2,16,20 x=3	
2,			-4,	-6,		2 12	2 2	2 2.2	2		
5,		17,			_,	$x^{-} - 12$,	x^2-2x+	- Z, ZX ²	13,1	-4, 7,31 $x = 10,16$ $x = 10$	-5
2,		-8,									

		rithmetic fi							
Circl	e the first tern	n, write $t_1=$, and fi	nd the comi	mon difference	e, twice	· .		
				_		0.14	20.26.22		
(1)	3, 5, 7,		, 7, 11, 1	15,		8, 14,	20, 26, 32		
t	$t_1 = 1$	t	=						
d	d = 3 - 1 = 2 d = 5 - 3 = 2) (d = d = d = d						
d	l = 5 - 3 = 2) (d =						
10	, 8, 6,		3, -1, -	5,		5, 2.5,	, 0,		
12	2, 17, 22, 27, 3	2 –	-10, —12	2, -14, -16	5,-18	14, 19	, 24, 29, 34		
	1 3 5		9 7 5						
_	$-\frac{1}{2}, -\frac{3}{2}, -\frac{5}{2},$		$\frac{3}{2}$, $\frac{3}{2}$, $\frac{3}{2}$			27, 13	, -1,		
2,	, 3, 4, 5, 6		-3, -5,	-7, -9, -1	1	5, 11	, 17, 23, 29		
9,	, 12, 15, 18, 21		16, 21, 2	6,31,36		030	.31, 0.32, 0.	33	
						0.5, 0	.51, 0.52, 0.	33,	

C11	1 - 1.1 - Ar	rithmetic M	leans H\	W			
Write	e the first 5 tern	ms of the sequenc	ce				
$t_1 =$	= 2, d = 3		$t_1 = 4$	4, d = -3		$t_1 = -4, d = 5$	
	7 + - 3				$t_1 = 5, t_3 = 15$		
ι_1 –	$-7, t_3 = 3$						
$t_1 = 2$	$2, t_4 = -4$			t ₁ =	$= 7, t_4 = -32$		
				*	- 7,04		
	12 01				t - 2m 0 t -	2 2	
$t_1 =$	$= 13, t_5 = 81$				$t_1 = 2x - 8, t_3 =$	3x - 2	
					6,13,19, <i>x</i>	c = 7	

	C11 - 1.1 - Arithmetic Means HW	
ı	Find t_1 $and \ d$	
	$t_2 = 2, t_3 = 4$	$t_2 = 15, t_3 = 20$
	$t_2 = 2, t_4 = -8$	$t_2 = 8, t_4 = -32$
		$\iota_2 = 0, \iota_4 = -32$
	$t_2 = 2, t_5 = -13$	$t_2 = 3, t_6 = 23$
	$t_3 = 4, t_{10} = 39$	$t_3 = 3, t_{12} = -1527$
	13 - 4,110 - 37	

C11 - 1.1 - Ar	ithmetic Sequences WS
++	
$\frac{3}{t}$, $\frac{5}{t}$, $\frac{1}{t}$	$\frac{?}{3}$, $\frac{?}{t_4}$, $\frac{?}{t_5}$ $\frac{?}{t_n}$ $n = n$
n = 1 $n = 2$ $n =$	n = n
$t_1 =$	
$d = t_n - t_{n-1}$	$\boxed{d = t_n - t_{n-1}}$
	$l = \frac{1}{l}$
	Arithmetic: d must always be the
1. Find the Genera	$dterm t_n = ?$
	$t_n = t_1 + (n-1)d$
	The first term plus'n – 1' differences
What is the tenth	term t ₁₀ ? Or, Start from beginning
$t_n =$	General term formula
	Remember: You could have also added
	the common difference 7 times to Term 3 (t_3)
	Check your answer: 3,5,7,
31 is what term,	$r_n = 31, n = ?$
$t_n =$	
	Check your answer: 3,5,7,

C1:	1 - 1.3	1 - A	rithr	neti	c Ge	nera	al Te	rm, ı	nth	term	s H\	N				
Find	the Ger	neral te	erm.		Find	the 1	8th ter	m. t_{18}	=?	Find	out w	vhat te	rm 63	ic t	= 63.	
	7,							10		Fillu	out v	viiat te	1111 03	13. t _n	_ 03.	
				,												
t ₁	=	d	=													
		d	=													
	_ + . (n 1`	\ d													
ι_n	$= t_1 + ($	n-1	ju													
Find t	he Gen	eral te	rm.		Find	the 12	th terr	n. t_{12}	=?	Fine	d out	what t	erm 4	9 is. t_n	= 49	
4,	9,	1/1														
7,	<i>J</i> ,	14,	•••													
Find th	ne Gene	ral ter	m		Find t	he 20t	h term	. t ₂₀ =	-?	Find	out w	vhat te	rm 64	is. t_n	= 64.	
7,	10,	13,														

C11 - 1.2 - Arithmetic Series Sum terms WS

Find the sum of the first sixth terms of the sequence.

2, + 4, + 6, + ____, + ____ =

3, + 7, + 11, + ____, + ____ =

8, 14, 20, ____, ____ =

7, 10, 13, ____, ____,

11, 14, 17, ____, ____,

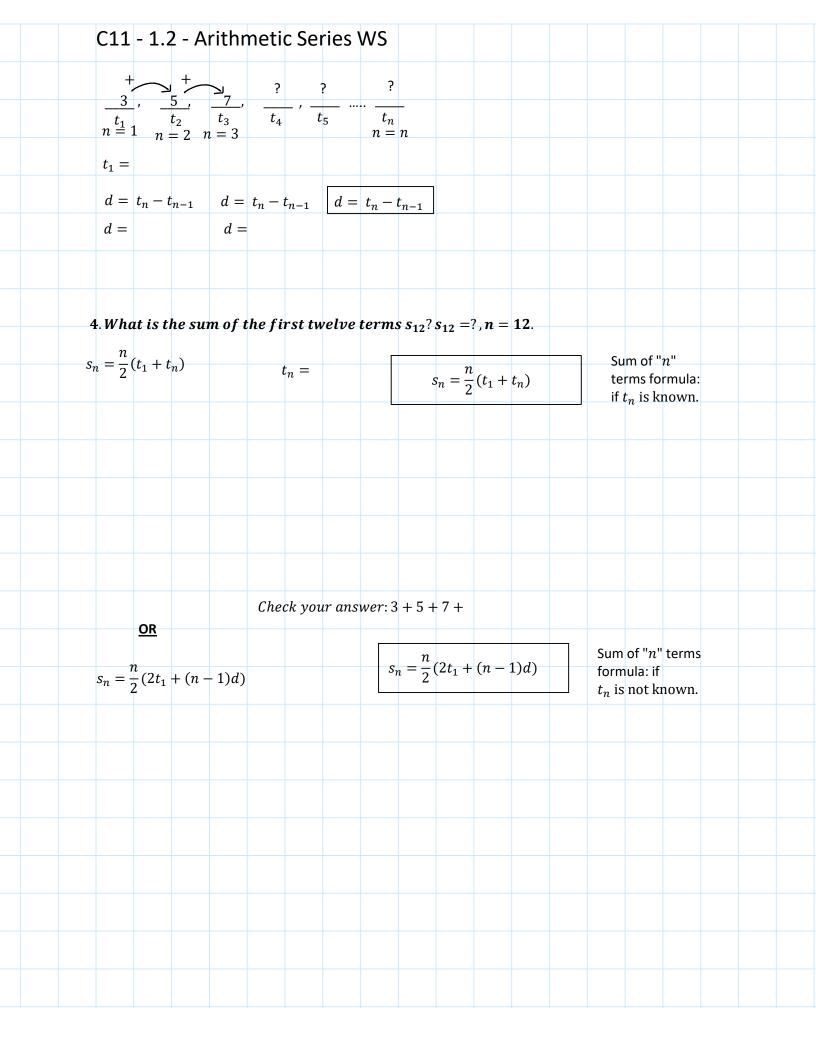
6, 8, 10, _____, _____

2, 6, 10, _____, _____,

3, 10, 17, ____, ____,

8, 13, 18, ____, ____,

7, 14, 21, ____, ____, ____


11, 17, 23, _____, _____,

8, 7, 6, _____, _____

7, 2, -3, ____, ____,

11, 8, 5, ____, ____

6, 5, 4, _____, _____

Final #		of the	finat	12 +04		_2	m = 1'									
Fina ti	ne sum	or the	TIPST	12 teri	ms. S ₁₇	2 = ?,1	n=12									
3,	7,	11,		15,					8, 14, 2	20, 26,	32	6,	13,20	, 27, 34	ł	
Find tl	ne sum	of the	first	18 ter	ms											
10, 8,	6,					3, -1,	, –5,					5, 2	2.5, 0, .			
Find t	he sum	n of the	- first	100 te	erms											
	10,	13,			, , , , ,		5, 1	1, 17,	23, 29)		14	ı, 38, 6	2, 86, .		
	,						-,	, ,								
Find th	e sum	of the	first 2	251 ter	rms.											
$\frac{1}{2}, \frac{3}{2}, \frac{5}{2}$							9 7	7 <u>5</u>					27, 13	, -1,		
$\frac{\overline{2}}{2}, \overline{2}, \overline{2}$,						2'2	2, 2,								

Find "n" the	e number of terms			
Tilla II till	e number of terms			
15, 16, 17,	18, 19 100	$ t_n $	4, 8, 12, 16, 20	444
$t_n = t_1 -$	+(n-1)d			
13, 15, 17	, 19,273		3, 5, 7, 9, 11	139
9, 12, 15, 18	3, 213342		2, -2, -6,410	1
			2, 2, 3,	
8, -6, -2	0,160		-25, -42, -59,	569

Find n and the sum.	
12 + 18 + 24 + + 72	8 + (-2) + (-12) + + (-102)
$t_n = t_1 + (n-1)d$ $s_n = \frac{n}{2}(t_1 + t_n)$	
$\frac{3n}{2}$	
10, 12, 14,88	14, 19, 24, 29, 34 99
4, 8, 12, 16, 400	3, 5, 7, 9, 371
16, 21, 26, 31, 1001	

P!1	4b a!	ala = 1		£ 41										
rind	the mis	sing te	erms o	r the s	sequen	.e.								
2,	4,	8,		,		,	<u> </u>	,				, 27	7,	81, 243,
1,	2,	4,		ı		,						6	25	2125
							_					, 6	25,	3125
5,	20,	80,		_		_		,		,		, -1,	1 5'	$-\frac{1}{25'}$
-4,	2	-1,											5	25
-4,	Ζ,	-1,		_,			 4,	_			1 16'			
9,	3,	1,		,		,								
10,	100,	1000	0,			_		5,		+			_,	
								2		32,				
4,	6,	9, _	,	-	,	-		2, _		32,	_		_	,
-4,	-2,	-1,				,	 5,				, 40), 8	30,	160,
							2,		,		, 16	j, _	,	,
.5,	.25,	.125,		_,		, .								
							1,					$-\frac{1}{8}'$	1	$-\frac{1}{32}$
2 7'	12 35'	72 175'							,			8′	16′	32'
7 '	35′	175'					 1					(1)4	
							x + 1	, <u> </u>	,		,	(x -	+ 1) ⁴ ,	
6,	-1,	$\frac{1}{6}$,								
		ь					3,		_,		ر	,	,	243
1 3'	2 9'	4 27'		,										
3,	9'	27		_						ınd mi.				
$\frac{1}{2}$	$\frac{3}{2}$	9 2'		,		,	 <i>x</i> -	– 2,		2x + 2	2,	8x + 0		x = 5
												3,1	2,40	x — 3
х,	x^2 ,	<i>x</i> ³												

C11 - 1.3 - Geometric Means HW

Write the first terms 5 of the sequence

$$t_1 = 2, r = 3$$

$$t_1 = 4, r = -3$$

$$t_1 = -4, r = \frac{1}{2}$$

$$t_1 = 4$$
, $t_3 = 16$

$$t_1 = 5, t_3 = 20$$

$$t_1 = 2, t_4 = -54$$

$$t_1 = 1, t_4 = \frac{1}{8}$$

$$t_1 = 3, t_5 = 243$$

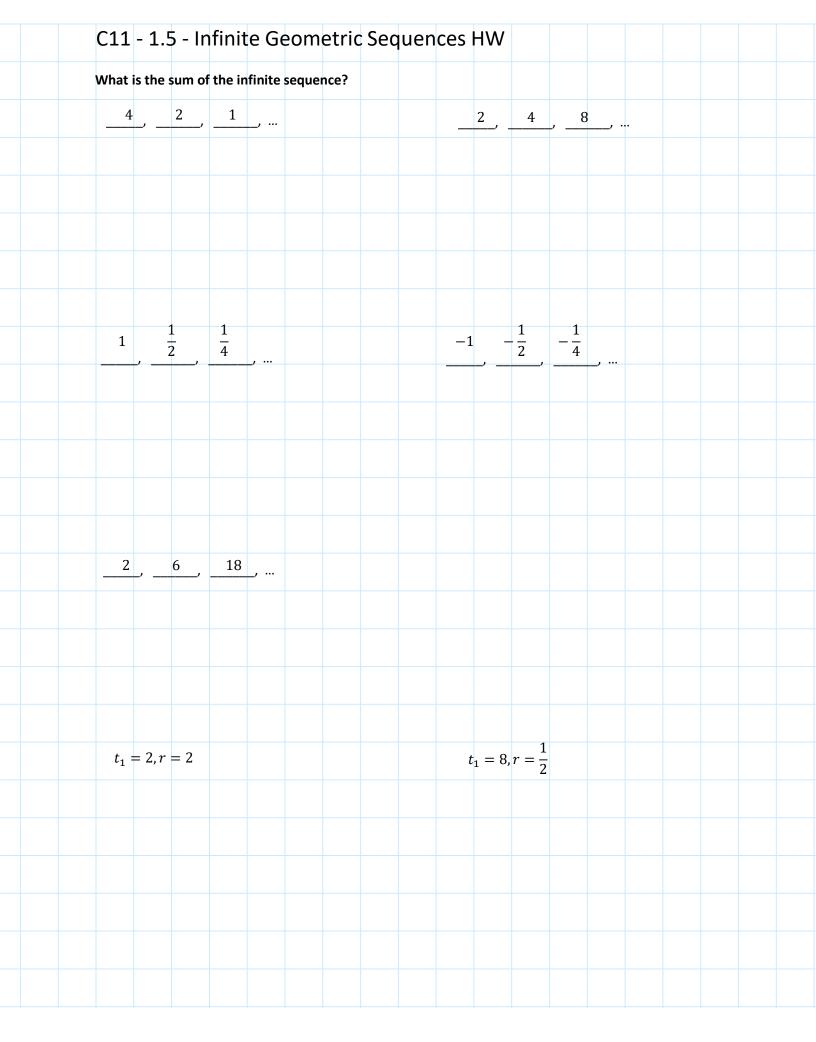
$$t_1 = x - 1, t_3 = 4x - 4$$

	C11 - 1.3 - 0	Geometr	ric Mean	s HW					
FI	ind t_1 and r								
	$t_2 = 2, t_3 = 4$								
	$\iota_2 = \iota_1, \iota_3 - \iota_1$				$t_2 =$	$= 10, t_3 = 1$	20		
	$t_2 = 2, t_4 = 96$					0 + - 20	,		
	2 - 2, 64 - 70				$\iota_2 - \iota$	$8, t_4 = 32$	-		
	$t_2 = 2, t_5 = -16$	6			$t_2 = 2$,	$t_6 = 32$			
	$\iota_2 - \iota_5 - \iota_5$	В							
	4 E1:				$t_3 =$	$-3, t_{12} =$	-59049		
L	$t_3 = 4, t_{10} = 512$	2							

	C11	- 1.3	- G	eom	etri	c Sec	quer	ice j	find	t_1 ,	r WS	5						
F	ind the	e first t	term i	t_1 , and	l the c	ommo	n ratio	twice	2.									
	2, 4, 8,	,					3,	, 9, 27,					5	, 25, 1	25,			
<i>t</i>	1 = 2						t_1 :	_										
							1											
1	$r=\frac{4}{2}$	= 2					r =	_										
	$r = \frac{8}{4}$	= 2					r =	_										
	4																	
	8, -4,	2					6	26	216					F 10	20			
	0, 1,	2,					-0,-	-36, –	210					5, 10,	, 20,			
	$2, \frac{1}{2}, \frac{1}{8}$	l 5,					-27,	-3, -	$\frac{1}{2},$					27,	$3, \frac{1}{3},$			
		3							S						3			
	1, -1,	1,				_	10, 10	00, –1	000,				0.3,	0.03,	0.003	,		

Find the General Term	Find the 12th term. $t_{12} = ?$	Find out what term 128 is. $t_n=128$.
2, 4, 8,		
$t_1 = r =$		
r =		
$t_n = t_1 r^{n-1}$		
Find the General Term	Find the 6th term. $t_6 = ?$	Find out what term 162 is. $t_n = 162$.
2, 6, 18,		
		Find and observed 1 to 4 1
Find the General Term	Find the 8th term. $t_8 = ?$	Find out what term $\frac{1}{128}$ is. $t_n = -\frac{1}{128}$.
$8, -2, \frac{1}{2}, \dots$		
Find the General Term	Find the 5th term. $oldsymbol{t}_5=?$	Find out what term 0.00000003 is.
0.3, 0.03, 0.003,		

C11	1.3	3 - G	ieom	etri	c Se	quer	nces	WS									
×	3	×3_											first				
2		6.	$\frac{18}{t_3}$ $n =$?		?						commo term	on rat	io		
	<u>-</u> -	t_2		,	<u>t.</u>		+							n er of t	terms		
n =	1	n=2	n =	3	-6		n = n					-			-		
t ₄	= 2																
r =	t_n		r =	$\frac{t_n}{t_n}$		$ _{r} =$	t_n		\boldsymbol{A}	term c	livide	d by t	he te	rm be	fore it	±	
, –	$\overline{t_{n-1}}$		•	t_{n-1}		1	t_{n-1}										
r =	:		r =														
			,														
						Geo	metric	: r mus	t alwa	vs be t	the sar	me					
									-	-	-						
Fine	1 + 12 2 C	an a	1 + 000000		2												
			l term	$t_n = :$	(\neg								
t_r	$t_1 = t_1 r$	n-1				t.	$\frac{1}{n} = t_1$	n-1		Gen	ieral te	erm fo	rmula				
	ļ.,,	7:0:				<u> </u>											
Wha	t is th	e fift	th terr	$m t_5$?	$t_5 = ?$	n = 5	5 .										
t_n	. =																
				Ch	-1			2 (10									
								2,6,18, have al		ıltinljed	d the c	ommc	on rati	o 2 tin	nes to 1		
				110.	licii	61.104	Coura	nave a.	30 1112	Пирпес	J GIC C	0111111	/III I G C.	J Z (163 60 0	3	
3.7	Γhe nu	mber	1458 i	is who	at teri	$m?t_n =$	= 1458	n = ?									
						11		,									
	$= t_1 r^n$	1-1															
^t n	± ι ₁ ι																


C11 -	1.5	, G	COIII	-		<u> </u>									
Find "n'	' the	numb	er of t	erms											
2, 4, 8,	25	6 –	\rightarrow	t_n		3	3, 9, 27	, ,	. 729			4, 8,	, 16,	204	18
$t_n = t_1$	$\lfloor r^{n-1}$	1													
8, -4, 2,		$\frac{1}{256}$			-6	, –36,	-216	j	. – 466	556		5,	10, 20),	.160
$2,\frac{1}{2},\frac{1}{8},.$		1				9, –	3, 1,	1				27,	$\frac{1}{3,\frac{1}{2}}$,	<u>2</u> :	1
		512				-		81					3		187
1, 2, 4, .		6553 <i>6</i>			10, 100	100	0	1000	በበበ	(0.3, 0.0	3. 0.00	03, (0.0000	0000003
±, =, -, -		10000		<u> </u>	10,100	, 100	,	1000				,	-,		

C11 - 1.4 - Geometric Sequence sum	terr	ms WS	
Find the fourth, fifth and sixth terms of the sequence.			
2, + 4, 8, +, +, +	_ =	=	
3, + 9, + 27, +, +, +		_ =	
1, + 2, + 4, +, +, +		. =	
5, + 20, + 80, +, +, +		_ =	
4, + 6, + 9, +, +, + _		. =	
4, + 2, + 1, +, +, +			
9, + 3, + 1, +, +, + _			
10, + 100, + 1000, +, +,	+	=	
4, + 10, + 25, +, +, +			
7, + 14, + 28, +, +, +			
2, + 12, + 72, +, +, +			
6, + 1, + $\frac{1}{6}$, +, +		=	
$\frac{1}{3}$, + $\frac{1}{9}$, + 1/27, +, +			
2, + -4, + 8, +, +, + _		=	
$\frac{1}{2}$, + $\frac{3}{2}$, + $\frac{9}{2}$, +, +, +		_	
$x, +x^2, +x^3, +$, + =			

C1:	1 - 1.4	l - G	eom	etri	c Sei	ries \	WS										
×	$\frac{3}{2}$ $\frac{3}$	3			2	_							rst te				
2	, 6	<u> </u>	18 ,			,	(= con $= te$	nmon	ratio			
t_1	t	2	t_3		t_6	t_n							mber	of tei	ms		
n =	1 n	= 2	n = 3			n =	= n							,			
t_1	= 2																
r –	$\frac{t_n}{t_{n-1}}$		r =	t_n		$r = \frac{t_1}{t_2}$	n_	A	term	divide	d by t	he tei	m be	fore i	t		
, –	t_{n-1}		-	t_{n-1}	L	t_n	-1										
r =			r =														
						Geom	etric:	r must a	always	be the	same						
Wha	it is the	sum	of th	e firs	t six	terms	s s ₆ ?:	s ₆ =?,1	n = 6.								
	t (1 _	r^n	Ī		t ₁ (1 –	r^n											
$s_n =$	$=\frac{t_1(1-1)}{1-1}$	r)		$s_n = \frac{1}{2}$	1 –	$r \mid r$		Sum of (if numl									
	1	,	L		_			known)		CIIIIS I	3						
				Chec	k you	r ansv	ver: 2	2 + 6 +	18 +								
	<u>OR</u>																
	$=\frac{t_1-r}{1-r}$	t_n			<i>t</i> –			$s_n = \frac{t_1}{1}$	$-rt_n$		Sum	of " n "	terms	formu	la		
$S_n =$	$=\frac{1}{1-i}$	r			$t_n =$			⁵ n 1	. <i>- r</i>		(if las	t term	t_n is k	nown)		
Who	ıt is the	Sum	of an	infi	nite n	บาทค	er of	terme	:?								
, , , , , , , , , , , , , , , , , , ,					11	unu	. Uj	eei iits	•								
	<i>r</i> =		<i>r</i> >	> 1, ∴													

C11	1,	1 - G	Oor	actri	م ک م		200	find	1 +	۰ ۱۸/ <u>۲</u>						
CII	- 1.4	+ - Ն	eon	leur	CSE	quei	ice j] IIIu	ι_1 ,	r WS)					
Find th	ie sum	of the	e first 6	6 term	ı s. s ₆ =	=?, n =	= 6									
2, 4, 8			$\frac{t_1(1-t_1)}{1-t_1}$	r^n)		2	2.27					5 21	5, 125,			
- , -, -		s_n –	1 -	r		3,	,9,27,	,				3, 4), 140,			
Find the	e sum	of the	e first 9	term	S											
8, -4, 2	2,					-6	6, –18,	, –54					5, 10, 2	20,		
Find t	he sur	m of th	he first	11 ter	rms.											
								1					27, 3,	1		
$2, \frac{1}{2}, \frac{1}{4}$,					9, -	-3, -	3,					۷/, ۵,	3'		
Find t	he sun	n of th	ne first	5 tern	ns.											
1, 2, 4,						10.1	.00, 10	200				22.0	22.0	222		
Ţ, , .						10, 10	JU, 10	00,				0.3, u).33, u	.333,		

C4.	1 4	4 6			۲.		\ \ \ (C										
C1	1 - 1	.4 - G	eon	netri	c fin	d 'n'	WS										
Find	n, and	d the su	m														
2, 4, 8	3	256 —	>	t_n			2.0.2	7	720			5 21	5 125	,	2125		
t -	- t.r ⁿ	256 		$t_1 - t_1$	rt_n		3, 9, 2	7,	/29			J, Z.	J, 12J	,	3123		
cn -	- 11		$S_n =$	1 –	r												
8, -	1, 2,	$\frac{1}{256}$			-6,	-36, -	-216.		- 4665	66		5, 10,	20,	16	50		
		250															
1	1	1						1					1		1		
$2, \frac{1}{2}$	1 /8,	$\frac{1}{512}$				9,	-3, 1,	<u>1</u> 81	-			2	$7, 3, \frac{1}{3}$	·,	$\frac{1}{2187}$		
1, 2,	4,	.65536		10, 10	0, 1000),	.1000	000		0.	3, 0.03	, 0.003	3, 0.	00000	00000	3	

C11	- 1.6	5 - Si	gma	No	tatic	n W	'S									
Take	the s	um o	f the	terms	$a_k f$	rom t	he inc	dex to	n, go	ing u	p by 1	L each	ı time			
Arith	metic															
5																
$\sum_{k=1}$	3k =															
n-1																
$\sum_{}^{5}$	2k-1	1 =														
k=2	2.0	-														
_																
$\sum_{i=1}^{5} a_i$	-2 <i>k</i> -	1 =														
k=2																
Con																
	ometric															
$\sum_{i=1}^{6}$	$3(2)^{k-}$	·1 =														
k=2																
															<i>f</i>	3
$\sum_{i=1}^{4} 2i$	$2(3)^{k-}$	1 =													(3
k=1	, ,															
∞																
$\sum_{i} 3$	$3(\frac{1}{2})^{k-1}$	¹ =														
k=1																

9	_,,	, ,			7 70	4001			s W	J. G			_			
						ar at w			raise	of \$30	00 per	year.	How m	nuch		
willy	ou ma	ke in y	our 10	th, 20	th, 501	th year	at wo	rk?								
How	much	will yo	u mak	e total	after :	10 yea	rs, 20 y	ears a	nd 50	years?						

Н	ow high	does the	e ball b	oounce	after	the firs	st bou	nce? T	he thir	d bou	nce?			80% o	fthe	
Н	ow high	does the	e ball b	oounce	after	the firs	st bou	nce? T	he thir	d bou	nce?					
Нс	ow high (does the	e ball b	oounce	after	the ntl	h bour	nce? (F	ind the							
Нс	ow high (does the	e ball b	oounce	after	the ntl	h bour	nce? (F	ind the							
Н	ow high (does the	e ball b	oounce	after	the ntl	h bour	nce? (F	ind the							
Н	ow high (does the	e ball b	oounce	after	the ntl	h bour	nce? (F	ind the							
Нс	ow high (does the	e ball b	oounce	after	the ntl	h bour	nce? (F	ind the							
Нс	ow high (does the	e ball b	ounce	after	the ntl	h bour	nce? (F	ind the							
Н	ow high	does the	e ball b	ounce	after	the ntl	h bour	rce? (F	ind the							
	Jw Iligii v	uoes tiii	e ball b	Journe	aitei	tile iiti	i boui	ice: (r	IIIU LIIE		ral for	mulal				
										gene	1 41 101	illulaj				
Н	ow high	does ti	he ball	bound	ce af t	ter the	9th Ł	ounce	$e.(t_{10} =$	=?)						
	Vhat is tl ravelled											es fore	ever, w	hat is	the tot	tal
	ounce?				iliu loi	tile 3	LII			aista	nce?					

C1	L 1 -	1.8	- G	eom	etri	c Se	quer	ice S	Serie	s W	ord I	Prob	lem	S				
						at wo	rk and	get pa	id dou	ble ea	ch year	after.	How r	nuch v	will you	ı make	in you	r
				ar at w														
											_							
Hov	v muc	ch wi	ll you	make	total a	fter 10) years	, 12 ye	ears an	d 20 y	ears?							