C11 - 1.3 - Geometric Means Notes

Write the first terms 5 of the sequence

$$t_1 = 2, r = 3$$
 $x = 3$
 $x = 2$
 $x = 3$
 x

 t_1 = 1st term (aka: "a or u_1 ") r = common ratio t_n = term n, every term n = Term #, or # of terms

$$t_2 = 9, t_5 = 243$$
 $t_1 = 2, t_5 = 162$
$$9r^3 = 243 \qquad 5 - 2 = 3$$

$$2r^4 = 162 \qquad 5 - 1 = 4$$

$$r^3 = 27 \qquad r^4 = 81$$

$$r = 3$$

$$3, 9, 27, 81, 243$$

$$r = \pm 3$$

$$2, 6, 18, 54, 162$$

$$2, -6, 18, -54, 162$$

C11 - 1.3 - Geometric Sequences Notes

3,6,12 ...
$$t_n = ?$$
 $t_n = ?$ $t_n = 768, n = ?$

$$r = ?$$

$$t_n = ?$$

$$t_5 = ?$$

$$t_n = 768, n = ?$$

$$t_1 = 3$$

$$r = \frac{t_n}{t_{n-1}} \qquad r = \frac{t_n}{t_{n-1}}$$

$$r = \frac{6}{2} \qquad r = \frac{12}{6}$$

$$r = \frac{t_n}{t_{n-1}}$$

A term divided by the term before it

$$t_{n-1} = term\ before\ t_n$$

Geometric: r must always be the same

Find the General term $t_n = ?$

$$t_n = t_1 r^{n-1} t_n = 3(2)^{n-1}$$

General term formula

$$t_n = t_1 r^{n-1}$$

The first term times 'r - 1' differences

What is the fifth term t_5 ? $t_5 = ?$, n = 5.

$$t_n = 3(2)^{n-1}$$

$$t_5 = 3(2)^{n-1}$$

$$t_5 = 3(2)^{5-1}$$

$$t_5 = 3(2)^4$$

$$t_5 = 48$$

Check your answer: 3,6,12,24,48

Or, Start from beginning

$$t_n = t_1 r^{n-1}$$

$$t_5 = 3(2)^{5-1}$$

$$t_5 = 48$$

Remember: You could have also multiplied by the common ratio repeatedly

The number 768 is what term? $t_n = 768$, n = ?

$$t_n = 3(2)^{n-1}$$
 $768 = 3(2)^{n-1}$
 $256 = 2^{n-1}$
 $2^8 = 2^{n-1}$
 $8 = n-1$
 $2^8 = 2^{n-1}$
 $2^8 = 2^{n-1}$

Check your answer: 3,6,12,24,48,96,192,384,768