C12 - 4.0 - Acids & Bases $\begin{array}{c|c} HCl_{(aq)} + NaOH_{(aq)} \rightarrow NaCl_{(aq)} + H_2O_{(l)} \\ Acid + Base \rightarrow Salt + Water \end{array} \begin{array}{c|c} H^+ + OH^- \rightarrow H_2O_{(l)} \\ NIE \end{array}$

Salt - The neutralization product which results when an acid and a base react.

Acid - Any substance that releases $H_{(aq)}^+$ in water.

-React with Bases/Are Electrolytes

-Turn Litmus Paper Red

-Taste Sour (Vinegar, Lemon Juice)

-Act on some metals to produce $H_{2(q)}$

 $Mg_{(s)} + 2HCl_{(aq)} \rightarrow MgCl_{2(aq)} + H_{2(g)}$

Base - Any substance that releases $OH_{(aa)}^-$ in water.

-React with Acids/Are Electrolytes

-Turn Litmus Paper Blue

-Taste Bitter (Baking Soda)

-Feel Slippery

Sulphuric Acid - H₂SO₄ (Battery Acid)

-Good dehydrating agent -Strongly exothermic acid when mixed with water

-Concentrated form chars some types of organic material (ie. Sugars) Insecticides/ Detergents/Plastics

Reacts with some metals (Often slowly.)

-Good Electrolyte (Conducts Electricity)

-Concentrated Sulphuric Acid is $98\% H_2SO_4$ and 2% water.

 $(18 M H_2 SO_4)$

Properties: Common Uses

-Production of Sulphates

-Manufacturing Fertilizers/Dyes/

-Used to absorb water and keep chemicals

& nonaqueous solutions free of water

-Used in car batteries as an electrolyte

Hydrochloric Acid - HCl (Muriatic Acid)

-Good electrolyte

-Concentrated solutions have a coking odor

-Reacts with some metals (Often slowly.)

-Concentrated Hydrochloric Acid is 97% *HCl* and 2% water. (12 *M HCL*)

Nitric Acid - HNO₃

Ammonia - NH_3

-Colours protein yellow

-Very reactive, quickly attacks almost all metals

-Concentrated Nitric Acid is 69% HNO₃ in Water (16 M HNO₃)

-Production of Chlorides

-Cleaning metal products (removes metal oxides) and bricks.

-Catalyst in some Chemical reactions

-"Stomach acid" is a dilute solution of HCl, which activates a protien-digesting biological catalyst called an "enzyme."

-Production of Nitrates

-Removing "Boiler scale", which consists of calcium and magnesium carbonate.

Sodium Hydroxide - NaOH (Caustic Soda/Iye)

-Very corrosive (Caustic) to animal and plant tissue

-Highly exothermic reaction when mixed with water.

-Rapidly "deliquesces"; that is; absorbs H_2O from air.

-Rapidly absorbs $CO_{2(q)}$ from the air to form carbonates.

 $NaOH_{(s)} + CO_{2(s)} \rightarrow NaHCO_{3(s)}$

-Sodium salts

-Soap/Cleaning Products ie. Oven/Drain

-Manufacturing Glass/Pulp &

Paper/Plastics/Aluminum

-Neutralizing acids during industrial reactions

-Manufacturing Fertilizers/Explosives/Dyes

Potassium Hydroxide - KOH (Caustic Potash)

-Similar to NaOH, but melts at a lower temperature.

-Manufacturing liquid soap/Absorbing $CO_{2(q)}$

-Making potassium salts

fibres

 $(NH_{3(aq)}$ Ammonium Hydroxide) -Electrolyte in alkaline batteries

-Colourless, alkaline, highly toxic, corrosive gas with pungent odor. -highly soluble in water

-exothermic reaction when dissolved in water

-Manufacturing Nitric Acid/Explosives/Fertilizers/Synthetic

-Refrigeration gas

Acetic Acid - CH₃COOH (5% ag solution called "vinegar")

-Non-Electrolyte when concentrated (99-100%, 17M);

weak electrolyte when diluted

-Only affects highly reactive metals

-Making Acetates

-Food preservation (Pickles)

-Manufacturing Textiles and Plastics

12 Page 1

C12 - 4.0 - Acid & Base

$$H^+ + H_2O \rightarrow H_3O^+$$
"The proton"

$$\begin{bmatrix} H - O - H \\ H \end{bmatrix} +$$
"Hydronium Ion" Or "Hydrated Proton"

$$HCl_{(g)} \to H_{(aq)}^+ + Cl_{(aq)}^- \longrightarrow HCl_{(g)} + H_2O_{(l)} \to H_3O_{(aq)}^+ + Cl_{(aq)}^-$$

(lone electron pair)

Arrhenius - An Acid donates a H^+ . Bronsted - An Acid is a proton donor. - A Base donates an OH^- . Lowrey - A Base is a proton acceptor.

Lewis - An Acid is a LEP acceptor. - A Base is a LEP donor.

another substance. (Donor - gives away an H^+) Acid - A substance that donates a proton to Base accepts from . (Acceptor - receives an H^+)

Can supply:

Amphiprotic - Acts as an Acid or a Base $H_2PO_4^-, HS^-, HCO_3^-$

Monoprotic Acid - one proton.

 $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$ Water acts as an Acid

Diprotic Acid - two protons. Triprotic Acid - two protons. Polyprotic Acid - more than one*

 $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$ Water acts as a Base

 $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$

Conjugate Pair	Conjugate Acid	Conjugate Base
NH_4^+ , NH_3	NH_4^+	NH_3
H_30^+ , H_20	H_3O^+	H_2O
$H_2PO_4^-, HPO_4^{2-}$	$H_2PO_4^-$	HPO_4^{2-}
	Eytra Droton	Lacks a Broton

Strong Acid or Base is 100%

ionized in solution.

 $HCl_{(g)} \to H^{+}_{(aq)} + Cl^{-}_{(aq)}$

Weak

less than 100%

 $NH_{3(aa)} + H_2O_{(l)} \rightleftharpoons NH_{4(aq)}^+ + OH_{(aq)}^-$

Weak and Strong refer to % of ionization. Dilute and concentrated refer to molarity of a solution.

 $10 M HF_{(aq)}$ is concentrated and weak 0.001 *M HCl* is dilute and strong.

The Leveling Affect

- All strong acids are 100% dissociated in aqueous solution and are equivalent to solutions of $H_3O^+_{(aa)}$, -All strong bases $OH_{(aq)}^-$.

Solutions
Neutral -
$$[H_3O^+] = [OH]$$

Acidic - $[H_3O^+] > [OH]$
Basic - $[H_3O^+] < [OH]$

$$K_{H_2O} = [H^+][OH^-] = 1.00 \times 10^{-14} @25^{\circ}C$$

 $K_{H_2O} = [H_3O^+][OH^-] = 1.00 \times 10^{-14} @25^{\circ}C$

Acid Ionization - Reaction of a weak Acid with water. Base Ionization -Base

 K_a - Acid Ionization Constant. K_h - Base

Acid Ionization Base Ionization
$$NH_{4(aq)}^+ + H_2O_{(l)} \rightleftharpoons NH_{3(aq)} + H_3O_{(aq)}^+ \qquad NH_{3(aq)} + H_2O \rightleftharpoons NH_{4(aq)}^+ + OH_{(aq)}^-$$

$$HReact + Prod^{-1} \rightleftharpoons React^{-} + HProd$$
 $K_{eq} = \frac{K_a(reactant \ acid)}{K_a(product \ acid)} = \frac{[products]}{[reactants]}$

$$HClO_3^- + HS^- \rightleftharpoons CO_3^{2-} + H_2S$$
 $HClO_3^- \to CO_3^{2-} + H^+$
 $HS^- + H^+ - H_2S$ (Stronger)
 $HClO_2^- + HS^- \to CO_2^{2-} + H_2S$

C12 - 4.0 - Acid & Base pH
$$\begin{array}{c|c} pH = -\log_{10}[H_3O^+] \\ pOH = -\log_{10}[OH^-] \end{array} \quad pH + pOH = 14 \quad \begin{array}{c} \text{Only decimals} \\ \text{are significant.} \end{array}$$

 $10 \, mL \, 0.100 \, M \, HCl$ Reacts with :

90 mL 0.100 M NaOH

Find the ph of the mixture.

$$HCl + NaOH \rightarrow NaCl + H_2O$$

$$[H_3O^+]_{st} = 0.100 M \times \frac{10 mL}{100 mL} = 0.0100 M$$

$$H_3O^+ + OH^- \rightarrow 2H_2O$$

1:1 \rightarrow 1 OH^- is in excess (xs)

$$[OH^-]_{st} = 0.100 M \times \frac{90 mL}{100 mL} = 0.0900 M$$

$$[OH^-]_{xs} = [OH^-]_{st} - [H_3O^+]_{reacted}$$
 But $[OH^-]_{reacted} = [H_3O^+]_{reacted}$

$$[OH^-]_{reacted} = [H_3O^+]_{reacted}$$

Since
$$H_3O^+$$
 present reacted $[H_3O^+]_{reacted} = [OH^-]_{st}$

$$[H_3O^+]_{reacted} = [OH^-]_s$$

$$[OH^{-}]_{xs} = [OH^{-}]_{st} - [H_3O^{+}]_{st}$$
 $pOH = -\log_{10}[OH^{-}]$ $pH = 14 - 1.097$ $pH = -\log_{10}[H_3O^{+}]$ $= 0.0900 - 0.0100$ $pOH = -\log_{10}[0.0800]$ $pH = 12.903$ $12.903 = -\log_{10}[H_3O^{+}]$ $pOH = 1.097$ $10^{-12.903} = [H_3O^{+}]$

$$pOH = -\log_{10}[OH^{-}]$$

 $pOH = -\log_{10}[0.0800]$
 $nOH = 1.097$

$$pH = 14 - 1.097$$

 $pH = 12.903$

$$pH = -\log_{10}[H_3O^+]$$

$$12.903 = -\log_{10}[H_3O^+]$$

$$0^{-12.903} = [H_3O^+]$$

 $[H_3O^+] = 1.25 \times 10^{-13}$

Note: if
$$H_3O^+$$
 in excess $[H_3O^+]_{xs} = [H_3O^+]_{st} - [OH^-]_{st}$

Excess by moles method:

moles
$$H^+ = 0.100 \frac{mol}{L} \times 0.0100 L = 0.00100 mol$$

$$Total\ Volume = 0.0100 + 0.0900 = 0.100\ L$$

$$moles~OH^{-} = 0.100 \frac{mol}{L} \times 0.0900~L = 0.00900~mol$$

$$[OH^-]_{xs} = \frac{0.00800 \, mol}{0.100 \, L} = 0.0800 \, M$$

$$moles OH^- in \ excess = 0.00900 - 0.00100 = 0.00800 \ mol$$

Hydrolysis - Of a Salt is Reaction between Water and Cation/Anion/Both contained in the salt to produce an Acidic or Basic solution. (Note: All Salts are considered to ionized in water.)

Spectator Ions - The conjugates of strong Acids and Bases.

$$NaOH \rightarrow Na^+ + OH^ Na^+ + H_2O \neq NaOH + H^+$$
 Na^+ is a spectator $HCl \rightarrow H^+ + Cl^ Cl^- + H_2O \neq HCl + OH^ Cl^-$ is a spectator

Determining the behavior of a salt in water:

- -Determine ions produced when salt dissociates. (Discard any spectators from further consideration.)
- -lons will react as acids id on the left side of the table and/or bases if they are on the right.

$$NaCl_{(s)} \rightarrow Na^{+}_{(aa)} + Cl^{-}_{(aa)}$$
 Neutral, no Hydrolysis

$$NaCl_{(s)} \rightarrow Na_{(aq)}^+ + Cl_{(aq)}^-$$
 Neutral, no Hydrolysis
$$NaHC_2O_4 \rightarrow Na_{(aq)}^+ + H^+ + C_2O_{4(aq)}^{-1} \neq Chem \ 12$$

$$NH_{4}Cl_{5} \rightarrow NH_{4}^{+}(g_{5}) + Cl_{6}^{-}(g_{5})$$
 $Cl_{6}^{-}(g_{5})$ $Cl_{6}^{-}(g_{5})$

$$NH_4Cl_s \rightarrow NH_{4(aq)}^+ + Cl_{(aq)}^-$$
 Cl⁻ is a spectator $NaF_{(s)} \rightarrow Na_{(aq)}^+ + F_{(aq)}^ Na^+$ is a spectator

$$NH_4^+$$
 is found on the acid side of the Table so, F^- is found on the base side of the Table so,

$$F^-$$
 is found on the base side of the Table so

$$NH_4^+ + H_2O \rightleftharpoons H_3O^+ + NH_3$$
 Hydrolysis Reaction $F^- + H_2O \rightleftharpoons HF + OH^-$

$$F^- + H_2O \rightleftharpoons HF + OH^-$$

$$H_3O^+$$
 is produced, therefore solution is Acidic.

 OH^- is produced, therefore solution is Basic.

$$NaHC_2O_4 \rightarrow Na^+_{(aq)} + HC_2O^{-1}_{4(aq)}$$
 Na^+ is a spectator $HC_2O_4^{-1}$ is Amphiprotic

$$Na^+$$
 is a spectator

$$HC_2O_4^{-1}$$
 is Amphiprotic

$$HC_2O_4^{-1}$$
 as an Acid

$$HC_2O_4^{-1}$$
 as a Base

$$HC_2O_{4(aq)}^- + H_2O_{(l)} \rightleftharpoons H_3O^+ + C_2O_{4(aq)}^{2-}$$

$$HC_2O_{4(aq)}^- + H_2O_{(l)} \rightleftharpoons H_2C_2O_{4(aq)} + OH_{(aq)}^-$$

$$K_a(HC_2O_4^-) = 6.4 \times 10^{-5}$$

$$K_b(HC_2O_4^{-1}) = \frac{K_w}{K_a(H_2C_2O_4)} = \frac{1.0 \times 10^{-14}}{5.9 \times 10^{-2}} = 1.7 \times 10^{-13}$$

$$K_a > K_b$$
; $HC_2O_4^{-1}$ is an Acidic Solution.

C12 - 4.0 - Acid & Base

Find pH

0.500 M CH₃COOH

$$K_a = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]}$$
$$1.8 \times 10^{-5} = \frac{x^2}{(0.500 - x)}$$
 See Ta

See Table

 $1.8 \times 10^{-5} = \frac{x^2}{0.500}$

 $9 \times 10^{-5} = x^2$ $x = 3.0 \times 10^{-3}$

 $[H_3O^+] = 3.0 \times 10^{-3}$

Assume (0.500 - x) = 0.500Multiply

 \overline{L}

Start

= Eq (0.500 - x)

Square Root Both Sides

 $pH = -\log_{10}[3 \times 10^{-3}]$ pH = 2.52

≠ Quadform

 $Mole\ Ratio\ -1:1:1:1$

 $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$

Assume weak Acid is sufficiently Weak

Maximum of 2 sig figs in final answer. See Table.

 $0.50 \gg 3.0 \times 10^{-3}$ $0.50 - x = 0.50 - 3.0 \times 10^{-3} \approx 0.50$

Assume : $0.50 - x \approx 0.50$

+x

+x

 \boldsymbol{x}

% Dissociation =
$$\frac{[H_3O^+]_{eq}}{[HA]_{st}} = \frac{3.0 \times 10^{-3}}{0.5} = 0.006$$
 0.00

Find K_{α} pH = 1.700.100 M weak acid HA $pH = -\log_{10}[H_3O^+]$ $1.7 = -\log_{10}[H_3O^+]$ $[H_3O^+] = 0.01995 = 0.0200$

 $K_a = \frac{[H_3 O^+][A^-]}{[HA]} = \frac{(0.0200)^2}{0.080} = 5.0 \times 10^{-3}$

0.006 = 0.60% < 5% $Mole\ Ratio\ -1:1:1:1$

mol $HA + H_2O \rightleftharpoons H_3O^+$ L Start 0.100 <u>- 0.0200</u> = Eq0.080

0 0 +0.0200 + 0.02000.0200 0.0200

 $+A^{-}$

[HA] = 0.080 M

Find Mass NH_4Cl to produce 1.50L pH 4.75.

 $NH_4Cl \rightarrow NH_4^+ + Cl^-$ Cl⁻ is a spectator

Note: Solutions of CO_2 $H_2CO_{3(aq)} + H_2O_{(l)} \rightleftharpoons HCO_3^- + H_3O^+$ $SO_{2(q)} \approx H_2 SO_3$

 $NH_4^+ + H_2O \rightleftharpoons H_3O^+ + NH_3$ $pH = -\log_{10}[H_3O^+]$ $4.75 = -\log_{10}[H_3O^+]$ $[H_3O^+] = 1.78 \times 10^{-5}$

Start

 $NH_4^+ + H_2O \rightleftharpoons H_3O^+ +$

 $K_a = \frac{[H_3 O^+][N H_3]}{[N H_4^+]}$

 $x - 1.78 \times 10^{-5} \approx x$ See Table

Cross Multiply

x = 0.56578 $[NH_4^+] = [NH_4Cl] = 0.56578$ $mass\ NH_4Cl = 0.565\ mol \times \frac{53.5\ g}{mol} = 45g$

Find pH0.10 *M NaCN*

 $NaCN \rightarrow Na^+ + CH^ Na^+$ is a spectator

 $K_b(CN^-) = \frac{K_w}{K_a(HCN)} = \frac{1.0 \times 10^{-14}}{4.9 \times 10^{-10}} = 2.04 \times 10^{-5}$ $\frac{+\Delta}{= Eq} = 0.100 - x$

mol \overline{L}

 $CN^- + H_2O \rightleftharpoons HCN + OH^-$

$$K_b = \frac{[HCN][OH^-]}{[CN^-]}$$
 $0.100 - x \approx 0.100$ $pOH = -\log_1 Multiply$ $pOH = -\log_1 Multiply$ $pOH = -\log_1 Multiply$ $pOH = -\log_1 Multiply$ $pOH = 2.845$

 $pOH = -\log_{10}[OH^-]$ $pOH = -\log_{10}[1.43 \times 10^{-3}]$ pH = 14 - 2.845

pH = 14 - pOHpH = 11.15

 $x = 1.43 \times 10^{-3}$ $[OH^{-}] = 1.43 \times 10^{-3} M$

pOH = 10.64Find $K_h(A^-)$ 0.50 M of a weak acid HA. pH = 14 - pOH $pH = -\log_{10}[H_3O^+]$ mol pH = 14 - 10.64 $3.36 = -\log_{10}[H_3O^+]$ pH = 3.36 $[H_3O^+] = 4.37 \times 10^{-4}$ $0.50 - 4.37 \times 10^{-4} \approx 0.50$ $K_a(HA) = \frac{[HCN][OH^-]}{[CN^-]} = \frac{(4.37 \times 10^{-4})^2}{0.50} = 3.81 \times 10^{-7} \quad K_b(A^-) = \frac{K_w}{K_a(HA)} = \frac{1.0 \times 10^{-14}}{3.81 \times 10^{-7}} = 2.6 \times 10^{-8}$ $aA + bB \rightarrow cC + dD$ $\frac{moles\ A}{moles\ B} = \frac{a}{b}$ Equivalence Point Parameters -Concentration/Volume of Acid/Base/Mol Ratio Find $[H_2SO_4]$ $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + H_2O$ $25.10 \ mL \ 0.2055 \ M \ NaOH$ $25 \ mL \ H_2SO_4 \ \boxed{1 \ m = \frac{1 \ mol}{L} = \frac{1 \ mmol}{mL}}$ $c = \frac{n}{V}$ $[H_2SO_4] = 4.7471 \ mmol \ NaOH \ \sim$ $1 \ mol \ H_2SO_4 \ \boxed{1 \ mol \ H_2SO_4}$ mmol = millimol $[H_2SO_4] = 4.7471 \ mmolNaOH \times \frac{1mol\ H_2SO_4}{2\ mol\ NaOH} = 2.3735 \ mmol \times \frac{1}{25\ mL} = 0.09494 \ M$ Indicator - A weak organic acid or base with different colours for its conjugate acid and base forms. $Hln + H_2O \rightleftharpoons ln^- + H_3O^+$ When an indicator is put into an acid, the excess of H_3O^+ shifts the Eq. (Le'Chatelier's Principle) vellow $Hln + H_2O \rightarrow ln^- + H_3O^+$ An indicator is in its conjugate acid form when in highly acidic solutions Causing the solution to turn yellow Acidic solutions More yellow molecules than red $[Hln] > [ln^-]$ In basic solutions $[H_3O^+]$ is very low so that equilibrium $Hln + H_2O \longrightarrow ln^- + H_3O^+$ shifts to te ln^- side and the solution surns red **Basic Solutions** An indicator is in its conjugate bass More red molecules than yellow $\lceil ln^- \rceil > \lceil Hln \rceil$ form when in highly basic solutions **Neutral Solutions Orange Solution** $[Hln] = [ln^-]$ (End/Transition Point) $K_a = \frac{[ln^-][H_3O^+]}{[Hln]} = [H_3O^+] \qquad K_a = [H_3O^+] \qquad \text{The } [H_3O^+] \text{ at which an indicator changes colour equals the value of } K_a \text{ for the indicator.}$ $pK_a = -\log K_a \qquad -\log K_a = -\log [H_3 O^+]$ $pK_a = pH$ An indicator is at midpoint of its colour change when the pH of the solution equals the K_a of the indicator. If $Aliz^-$ is red, find Alizarian Yellow in 1×10^{-5} M NaOH. Alizarin Yellow 10.1 - 12 $pH = 11 : [HAliz] = [Aliz^-]$ $HAliz + H_2O \rightleftharpoons Aliz^- + H_3O^+$ vellow

 $\begin{array}{lll} \textit{HAliz} + \textit{H}_2\textit{O} \rightleftharpoons \textit{Aliz}^- + \textit{H}_3\textit{O}^+ & \textit{pH} = 11: [\textit{HAliz}] = [\textit{Aliz}^-] \\ \textit{yellow} & \textit{red} & \textit{pH} < 11: [\textit{HAliz}] > [\textit{Aliz}^-] \\ \textit{pH} < 11: [\textit{HAliz}] > [\textit{Aliz}^-] \\ \textit{pH} > 11: [\textit{HAliz}] < [\textit{Aliz}^-] \\ \textit{pH} > 11: [\textit{HAliz}] < [\textit{Aliz}^-] \\ \textit{pH} > 11: [\textit{HAliz}] < [\textit{Aliz}^-] \\ \textit{pH} > 10: [\textit{HAliz}] < [\textit{Aliz}^-] \\ \textit{pH} = -\log_{10}[\textit{H}_3\textit{O}^+] \\ \textit{pH} = -\log_{10}[1 \times 10^{-9}] \\ \textit{Alizarin Yellow is YELLOW} & \textit{pH} = 9 \\ \end{array}$

C12 - 4.0 - Titration of strong Acid with strong Base

Find pH mixing 50.0 mL 0.150 M NaOH and 50.0 mL 0.200 M HCl.

$$(0.0500)(0.150) = 0.00750 \, mol \, NaOH$$

$$(0.0500)(0.200) = 0.0100 \text{ mol HCL}$$

$$0.0100 - 0.00750 = 0.00250 \, mol \, HCl \, xs$$

$$[H_3O^+] = \frac{0.0025}{0.100} = 0.025 \, M$$

$$pH = -\log[0.025]$$

$$pH = 1.6$$

Find pOH mixing 75.0 mL 0.200 M HBr and 225.0 mL 0.150 M KOH.

$$(0.0750)(0.200) = 0.0150 \text{ mol HBr}$$

$$(0.22500)(0.150)$$
 $\bigcirc 0.03375 \ mol \ HCl$

$$0.03375 - .0150 = 0.01875 \, mol \, HCl \, xs$$

$$[OH^{-}] = \frac{0.01875}{0.300} = \underbrace{0.0625 \, M}_{pOH = -\log[0.0625]}$$

$$pOH = -\log[0.0625]$$

$$pOH = 1.204$$

Find pH mixing 5.00 mL 0.100 M sulfuric acid and 12.0 mL 0.100 M NaOH.

$$(0.00500)(0.100) \times \frac{2H^+}{1H_2SO_4} = 0.00100 \, mol \, H^+$$

$$(0.0120)(0.100) = 0.00120 \, mol \, OH^-$$

$$pH = 14 + \log\left(\frac{0.00020}{0.0170}\right)$$

$$pH = 12.07$$

$$0.00120 - 0.00100 = 0.00020 \ mol \ OH^{-} \ xs$$

$$pH = 12.07$$

C12 - 4.0 - Titration of weak Acid with strong Base

 $[CH_3COOH] = [CH_3COO^{-}]$

i = initial

 $CH_3COOH + NaOH \rightarrow Na^+ + CH_3COO^- + H_2O$ Na^+ is a spectator $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$ CH_3COOH is in excess All NaOH used up

25.0 mL Acetic Acid CH_3COOH of initial pH 2.2 is titrated with 28.8 mL NaOH to equivalence point.

Therefor at 14.4 mL to point of titration with pH = 3.2.

$$K_{a} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]_{\frac{1}{2}}}{[CH_{3}COOH]}$$

$$K_{a} = [H_{3}O^{+}]_{\frac{1}{2}}$$

$$pK_{a} = pH_{\frac{1}{2}}$$

At Equivalence Point

 $x = [CH_3COO^-] = [H_3O^+]$

$$K_{a} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH]}$$

$$K_{a} = \frac{[H_{3}O^{+}]^{2}}{[CH_{3}COOH]}$$

$$K_{a} = \frac{x^{2}}{A - x}$$

$$A - x = \frac{x^{2}}{K_{a}}$$

$$K_{a} = \frac{(C_{3}A \times 10^{-3})^{2}}{(C_{3}A \times 10^{-3})^{2}}$$

$$K_a = \frac{x^2}{A - x}$$

$$A - x = \frac{x^2}{K_a}$$

$$A - x = \frac{(6.31 \times 10^{-3})^2}{6.31 \times 10^{-4}}$$

$$A - x = 0.0631$$

$$A - x = 0.0631$$

$$A = 0.0631 + x$$

$$A = 0.0631 + 6.31 \times 10^{-3}$$

$$A = 0.0694$$

let $x = amount of CH_3COOH$ which dissociates $let A = [CH_3COOH]_i$

$$K_a = \frac{[OH^-]^2}{[Acid]_{eq}}$$
 $pK_a = pH_{\frac{1}{2}} = 3.2$

$$pH = 3.2$$
 $pH = 3.2$ $3.2 = 3.2$

$$pH = -\log_{10}[H_3O^+]$$

$$3.2 = -\log_{10}[H_3O^+]$$

$$H_3O^+ = 6.31 \times 10^{-4}$$

$$K_a = [H_3 0^+] = 6.31 \times 10^{-4}$$

$$pH_i = -\log_{10}[H_3O^+]$$

$$2.2 = -\log_{10}[H_3O^+]$$

$$[H_3O^+] = 6.31 \times 10^{-3} M_1$$

$(CH_3COOH) = 0.0694 M$

 $moles\ CH_3COOH = 0.0694 \frac{mmol}{mL} \times 25\ mL = 1.74\ mmol = mol\ NaOH$

$$[NaOH] = \frac{1.74 \ mmol}{28.8 \ mL} = 0.0602 \ M$$
 $pH > 7$ at Equivalence Point therefore Basic Use a test with high pH

Titration or 25 mL propanoic acid C_2H_5COOH (Initial pH = 2.95) with 23.8 mL 0.100 M NaOH to equivalence point and pH = 4.87 at 11.9 mL at point of titration.

 $C_2H_5COOH + NaOH \rightarrow C_2H_5COO^- + Na^+$

$$C_2H_5COOH + H_2O \rightarrow C_2H_5COO^- + H_3O^+$$

let $x = amount \ of \ C_2H_5COOH$ which dissociates let $B = [C_2H_5COOH]_i$

$$pK_b = p[OH]_{\frac{1}{2}} = 1.35 \times 10^{-5}$$

$$K_b = pOH = -\log_{10}[OH^-]$$

$$4.87 = -\log_{10}[OH^-]$$

$$R = \gamma = -100$$

$$\boxed{0H^-] = 1.35 \times 10^{-5} M}$$

$$pOH = -\log_{10}[OH^{-}]$$
2.95 = -\log_{10}[OH^{-}]

$$2.95 = -\log_{10}[OH^{-}]$$

$$OH^{-} = 1.12 \times 10^{-3} M$$

$$K_b = \frac{x^2}{(B-x)}$$

$$B - x = \frac{[1.12 \times 10^{-3}]^2}{1.35 \times 10^{-5}}$$

$$B - x = 0.0933$$

$$B = 0.0933 + x$$

$$B = 0.0933 + 0.00112$$

$$B = 0.0944$$

$$C_6H_5NH_2 = 0.0944 M$$

C12 - 4.0 - Titration of weak Base with strong Acid

 $NH_3 + HCl \rightarrow NH_4^+ + Cl^-$ Cl⁻ is a spectator

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^ NH_3$$
 is in excess All HCl is used up

25.0 mL NH_3 (a weak base) of initial pH 11.5 is titrated with 19.20 *mL HCl* to equivalence point.

Therefor at 9.60 mL to point of titration with pH 10.8.

Half way to the equivalence point (See Graph) half of initial base $[NH_3]$ is neutralized to its conjugate acid $[NH_4^+]$.

$$[NH_3] = [NH_4^+]$$

 $[NH_4^+][OH^-]_1$ $K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$ $K_b = \frac{[OH^-]_{\frac{1}{2}}}{[NH_3]}$ At Equivalence Point $x = [NH_4^+] = [OH^-]$ $K_{b} = \frac{x^{2}}{B - x}$ $B - x = \frac{x^{2}}{K_{b}}$ $K_{b} = \frac{[OH^{-}]^{2}}{[Base]_{eq}}$ $B - x = \frac{(3.2 \times 10^{-3})^{2}}{6.3 \times 10^{-4}}$

let $x = amount of NH_3$ which dissociates let $B = [NH_3]_i$ mol $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$ L Start 0 $+\Delta$ = Eq

B - x = 0.0158 M

B = 0.0158 + x $B = 0.0158 + 6.3 \times 10^{-4}$

B = 0.0165 M

 $pK_b = p[OH^-]_{\frac{1}{2}} = 3.2$

pOH = 14 - 10.8pOH = 3.2

pOH = 14 - pH

 $pOH = -\log_{10}[OH^{-}]$ $3.2 = -\log_{10}[OH^{-}]$ $|0H^-| = 6.3 \times 10^{-4} M$

 $K_h = [OH^-] = 6.3 \times 10^{-4}$

 $(NH_3) = 0.0165 M$

pOH = 14 - pHpOH = 14 - 11.5pOH = 2.5

 $pH = -\log_{10}[OH^{-}]$ $2.5 = -\log_{10}[OH^{-}]$ OH^{-}] = 3.2 × 10⁻³

 $moles NH_3 = 0.0165 \frac{mmol}{mL} \times 25 mL = 0.413 mmol = mol HC$

$$[HCl] = \frac{0.413 \ mmol}{19.2 - mL} = 0.0215 \ M$$

pH < 7 at Equivalence Point therefor (Acidic)

Use a test with low pH

Titration or organic base aniline $C_6H_5NH_2$ (Initial pH=8.72) with 16.3 mL 0.100 M HCl to equivalence point and pH = 4.63 at 8.16 mL at point of titration.

 $C_6H_5NH_2 + HCl \rightarrow C_6H_5NH_3^+ + Cl^-$

 $C_6H_5NH_2 + H_2O \rightarrow C_6H_5NH_3^+ + OH^-$

let $x = amount \ of \ C_6H_5NH_2$ which dissociates $let B = [C_2H_5NH_2]_i$

$$\begin{array}{cccc} \frac{mol}{L} & C_6H_5NH_2 \ + \ H_2O \rightleftharpoons C_6H_5NH_3^+ + OH^- \\ Start & B & 0 & 0 \\ \underline{+\Delta} & -x & +x & +x \\ = Eq & B-x & x & x \end{array}$$

it of titration. $pK_b = p[OH]_{\frac{1}{2}} = 4.26 \times 10^{-10}$ pOH = 14 - 4.63 = 9.37 $R_b = \frac{x^2}{(B - x)}$ $nOH = -\log_{10}[OH^-]$ $B - x = \frac{[5.25 \times 10^{-6}]^2}{4.26 \times 10^{-10}}$ OH^{-}] = 4.26 × $10^{-10} M$ B - x = 0.0647B = 0.0647 + xQOH = 14 - 8.72 = 5.28B = 0.0647 $pOH = -\log_{10}[OH^-]$ x is neglible

 $5.28 = -\log_{10}[OH^{-}]$ OH^{-} = 5.25 × 10⁻⁶ M

 $(C_6H_5NH_2] = 0.0647 M$

C12 - 4.0 - Buffers

Buffer - A solution containing appreciable amounts of a weak acid and it's conjugate weak base.

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

1.0 M 1.0 M

$$K_a = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]}$$
 $[CH_3COOH] = [CH_3COO^-]$
 $K_a = [H_3O^+]$
 $K_a = 1.8 \times 10^{-5}$ $pH = pK_a$

When equal concentrations of a weak acid and it's conjugate base are added to water, the resulting buffer will equal the pK_a value of the weak base.

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+ \qquad K_a = 1.8 \times 10^{-5}$$

$$K_a = 1.8 \times 10^{-5}$$

$$[CH_3COOH] = [CH_3COO^+] = 1.0 M$$

$$K_{a} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH]}$$

$$K_{a} = \frac{[1.0][H_{3}O^{+}]}{[1.0]} \qquad pH = -\log_{10}[H_{3}O^{+}]$$

$$pH = -\log_{10}[1.8 \times 10^{5}]$$

$$K_{a} = [H_{3}O^{+}] = 1.8 \times 10^{5} \qquad pH = 4.74$$

After diluting tenfold

$$[CH_3COOH] = [CH_3COO^+] = 0.10 M$$

$$K_a = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]}$$

$$K_a = \frac{[0.10][H_3O^+]}{[0.10]} \quad \text{Bu}$$

$$K_a = [H_3O^+] \quad \text{eff}$$

$$K_a = \frac{[0.10][H_3O^+]}{[0.10]}$$

Diluting a Buffer has no effect on pH

1 mol CH₃COOH $1 \, mol \, CH_3COO^-$ 1 *L*

If $0.10 \ mol \ H_3O^+$ added

Le'Chatalier

Equilibrium shifts to -use up $0.1 \, mol \, CH_3COO^-$ -produce 0.1 mol CH₃COOH If $0.10 \ mol \ OH^-$ added

Le'Chatalier

Equilibrium shifts to -use up 0.1 mol CH₃COH -produce 0.1 mol CH₃COO⁻

$$CH_3COOH + H_2O \rightarrow CH_3COO^- + H_3O^+$$

Acid Base

$$CH_3COOH + OH^- \longrightarrow CH_3COO^- + H_3O^+$$

Acid Base

Ratio after adding H_3O^+ Original Ratio

1 mol Acid

1.1 mol Acid

1 mol Base

0.9 mol Base

$$K_a = \frac{[CH_3C00^-][H_3O^+]}{[CH_3C00H]}$$

$$1.8 \times 10^{-5} = \frac{[0.9][H_3O^+]}{[1.1]}$$

$$H_3O^+] = 2.2 \times 10^{-5}$$

$$ph = pK_a$$

$$pH = -\log_{10}[H_3O^+]$$

$$pH = -\log_{10}[2.2 \times 10^{-5}]$$

Original Ratio Ratio after adding H_3O^+

0.9 mol Acid

1 mol Base

1 mol Acid

1.1 mol Base

$$K_a = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]}$$

$$1.8 \times 10^{-5} = \frac{[1.1][H_3O^+]}{[0.9]}$$

$$H_3O^+] = 1.47 \times 10^{-5}$$

$$ph = pK_a$$
$$pH = -\log_{10}[H_3O^+]$$

$$pH = -\log_{10}[1.47 \times 10^{-5}]$$