C11 - 3.2 - Mass/Moles/Volume/Density Notes

Calculate the molar mass of the following, assume 1 mol.

Cl mass Cl
$$=$$
 35.5g mass Cl $=$ $\frac{35.5g}{mol}$ $\frac{g}{mol}$
 N_2 mass $N_2 = 2N = 2 \times 14g = 28g$ mass $N_2 = 28g$ mass $N_2 = 28g$ mass $N_2 = 28g$ mass $N_2 = 28g$

$$D = \frac{m}{V}$$

$$H_2O$$
 mass $H_2 = 2H = 2 \times 1g = 2g$
mass $O = 1O = 1 \times 16g = 16g$
= 18g

$$mass H_2 O = \underbrace{\frac{18 g}{mol}} mass O = \underbrace{\frac{16 g}{mol}} mass H = \underbrace{\frac{1 g}{mol}}$$

How many moles in 12g of carbon?

How many moles in
$$50g$$
 of H_2O ?

Moles
$$C = 12g C \times \frac{1 \text{ mol } C}{12g}$$

Moles
$$H_2O = 50g H_2O \times \frac{1 \, mol}{18g} = 2.78 \, mol \, H_2O$$

What is the mass of 3.5 moles of CO_2 ?

$$g CO_2 = 3.5 \text{ moles } CO_2 \times \frac{44 \text{ g}}{1 \text{ mol}} = \underbrace{154 \text{ g C}}$$

$$2 \ mol \ O_{2(g)} \times \frac{32g}{1 \ mol \ O_{2(g)}} = 64 \ g \ O_{2(g)}$$
 Diatomic

Find Volume of 10.0
$$g$$
 $H_2S_{(g)}$ at STP . $STP: \frac{22.4L}{mol}$ $10.0 g$ $H_2S_{(g)} \times \frac{mol}{34.1g} = 0.2932 \ mol$ $10.0 g$ $H_2S_{(g)} \times \frac{mol}{34.1g} \times \frac{22.4L}{mol} = 6.57 \ L$ $H_2S_{(g)}$ OR $10.0 g$ $H_2S_{(g)} \times \frac{mol}{34.1g} \times \frac{22.4L}{mol} = 6.57 \ L$ $H_2S_{(g)} \times \frac{mol}{34.1g} \times \frac{22.4L}{mol} = 6.57 \ L$ $H_2S_{(g)} \times \frac{mol}{34.1g} \times \frac{22.4L}{mol} = 6.57 \ L$ $H_2S_{(g)} \times \frac{mol}{34.1g} \times \frac{22.4L}{mol} = 6.57 \ L$ $H_2S_{(g)} \times \frac{mol}{34.1g} \times \frac{22.4L}{mol} = 6.57 \ L$ $H_2S_{(g)} \times \frac{mol}{34.1g} \times \frac{22.4L}{mol} = 6.57 \ L$ $H_2S_{(g)} \times \frac{mol}{34.1g} \times \frac{22.4L}{mol} = 6.57 \ L$ $H_2S_{(g)} \times \frac{mol}{34.1g} \times \frac{22.4L}{mol} = 6.57 \ L$

Density: Mass per unit Volume

What is the density of an object with a mass of 100 g and a volume of 20 mL?

What is the volume of a 20 kg object with a density of
$$8 g/L$$
?

$$D = \frac{m}{V}$$

$$D = \frac{100}{20}$$

$$D = 5\frac{g}{mL}$$

$$20kg \times \frac{1g}{10^{-3}kg} = 20000g$$

$$D = \frac{m}{V}$$

$$8 = \frac{20000}{V}$$

$$20kg \times \frac{1g}{10^{-3}kg} \times \frac{1L}{8g} = 2500L$$

$$V = \frac{20000}{8}$$

$$V = 2500L$$
Isolate 1st
$$D = \frac{m}{V}$$

$$V = \frac{m}{D}$$

$$V = \frac{20000}{8}$$

$$V = 2500L$$

Avagadros Hypothesis: Equal volumes of different gases, at the same temperature and pressure contain the same number of particles. 22.4*L* @ STP; Standard Temperature and Pressure mol

What is the volume occupied by 1 mol nitrogen gas at STP?

$$\begin{bmatrix} 1 & atm, 0^{\circ}C \\ 101.3 & kPa, 273.15 & K \end{bmatrix}$$

 $Vol\ N_2 = 1\ mol \times \frac{22.4\ L}{mol} = 22.4\ L\ N_{2(g)}$

$$SATP: 25^{\circ}C, 1atm, 24.8 moles$$

How many moles of carbon dioxide gas gas in a balloon with a volume of 50 L at STP?

of mol
$$CO_2 = 50 L \times \frac{1 \, mol}{22.4 \, L} = 2.23 \, mol \, CO_{2(a)}$$

What is the density of 1 mol of carbon dioxide gas at STP?

OR
$$D = \frac{V}{44g}$$

$$D = \frac{1.96g}{L}$$

$$D = \frac{44g}{mol} \times \frac{1mol}{22.4L} = \underbrace{1.96g}_{L}$$